45 research outputs found
Holistic corpus-based dialectology
This paper is concerned with sketching future directions for corpus-based dialectology. We advocate a holistic approach to the study of geographically conditioned linguistic variability, and we present a suitable methodology, 'corpusbased dialectometry', in exactly this spirit. Specifically, we argue that in order to live up to the potential of the corpus-based method, practitioners need to (i) abandon their exclusive focus on individual linguistic features in favor of the study of feature aggregates, (ii) draw on computationally advanced multivariate analysis techniques (such as multidimensional scaling, cluster analysis, and principal component analysis), and (iii) aid interpretation of empirical results by marshalling state-of-the-art data visualization techniques. To exemplify this line of analysis, we present a case study which explores joint frequency variability of 57 morphosyntax features in 34 dialects all over Great Britain
New Technologies’ Promise to the Self and the Becoming of the Sacred: Insights from Georges Bataille’s Concept of Transgression
This article draws on Georges Bataille’s concept of transgression, a key element in Bataille’s theory of the sacred, to highlight structural implications of the way the self-empowerment ethos of new technologies suffuses the digital tracking culture. Pointing to the original conceptual stance of transgression, worked out against prohibition, I first argue that, beyond a critique of new technologies’ promise of self-empowerment as coming at the expense of an acknowledgement of the ultimate taboo—death—is the problem of the sanitizing of the tension between the crossing of the line of the symbolic taboo and prohibition; this undermines a “libidinal investment” towards the sacred, which is central in Bataille’s theory. Second, focussing on “eroticism”, since this embodies the emancipative potential of the Bataillean sacred, I argue that while a fear of eroticism marks out the digital technological realm, this is covered up by the blurring of boundaries between pleasure, fun and sex(iness) that currently governs our experience with technological devices
Facilitating the development of controlled vocabularies for metabolomics technologies with text mining
BACKGROUND: Many bioinformatics applications rely on controlled vocabularies or ontologies to consistently interpret and seamlessly integrate information scattered across public resources. Experimental data sets from metabolomics studies need to be integrated with one another, but also with data produced by other types of omics studies in the spirit of systems biology, hence the pressing need for vocabularies and ontologies in metabolomics. However, it is time-consuming and non trivial to construct these resources manually. RESULTS: We describe a methodology for rapid development of controlled vocabularies, a study originally motivated by the needs for vocabularies describing metabolomics technologies. We present case studies involving two controlled vocabularies (for nuclear magnetic resonance spectroscopy and gas chromatography) whose development is currently underway as part of the Metabolomics Standards Initiative. The initial vocabularies were compiled manually, providing a total of 243 and 152 terms. A total of 5,699 and 2,612 new terms were acquired automatically from the literature. The analysis of the results showed that full-text articles (especially the Materials and Methods sections) are the major source of technology-specific terms as opposed to paper abstracts. CONCLUSIONS: We suggest a text mining method for efficient corpus-based term acquisition as a way of rapidly expanding a set of controlled vocabularies with the terms used in the scientific literature. We adopted an integrative approach, combining relatively generic software and data resources for time- and cost-effective development of a text mining tool for expansion of controlled vocabularies across various domains, as a practical alternative to both manual term collection and tailor-made named entity recognition methods
The population history of northeastern Siberia since the Pleistocene.
Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas
Triple oxygen isotope distribution in modern mammal teeth and potential geologic applications
Reconstructing water availability in terrestrial ecosystems is key to understanding past climate and landscapes, but there are few proxies for aridity that are available for use at terrestrial sites across the Cenozoic. The isotopic composition of tooth enamel is widely used as a paleoenvironmental indicator and recent work suggests the potential for using the triple oxygen isotopic composition of the carbonate component of mammalian tooth enamel (delta'O-17(enamel)) as an indicator of aridity. How-ever, the extent to which delta'(17)O(enamel )values vary across environments is unknown and there is no framework for evaluating past aridity using delta'O-17(enamel) data. Here we present delta'O-17(enamel) and delta O-18(enamel) values from 50 extant mammalian herbivores that vary in physiology, behavior, diet, and water-use strategy. Teeth are from sites in Africa, Europe, and North America and represent a range of environments (humid to arid) and latitudes (34 degrees S to 69 degrees N), where mean annual delta O-18 values of meteoric water range from -26.0% to 2.2% (VSMOW). delta'O-17(enamel) values from these sites span 162 per meg (-252 to -90 per meg), where 1 per meg = 0.001%). The observed variation in delta'O-17(enamel) values increases with aridity, forming a wedge-shaped pattern in a plot of aridity index vs. delta'O-17(enamel) that persists regardless of geographic region. In contrast, the plot of aridity index vs. delta(18)O(enamel )for these same samples does not yield a distinct pattern. We use these new delta'O-17(enamel) data from extant teeth to provide guidelines for using delta'O-17(enamel) data from fossil teeth to assess and classify the aridity of past environments. delta'O-17(enamel) values from the fossil record have the potential to be a widely used proxy for aridity without the limitations inherent to approaches that use delta O-18(enamel) values alone. In addition, the data presented here have implications for how delta'(17)O(enamel)l values of large mammalian herbivores can be used in evaluations of diagenesis and past pCO(2) and past gross primary productivity. (C) 2022 Elsevier Ltd. All rights reserved.Peer reviewe
Recommended from our members
The population history of northeastern Siberia since the Pleistocene.
Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas
Rapid Hepatobiliary Excretion of Micelle-Encapsulated/Radiolabeled Upconverting Nanoparticles as an Integrated Form
In the field of nanomedicine, long term accumulation of nanoparticles (NPs) in the mononuclear phagocyte system (MPS) such as liver is the major hurdle in clinical translation. On the other hand, NPs could be excreted via hepatobiliary excretion pathway without overt tissue toxicity. Therefore, it is critical to develop NPs that show favorable excretion property. Herein, we demonstrated that micelle encapsulated (64)Cu-labeled upconverting nanoparticles (micelle encapsulated (64)Cu-NOTA-UCNPs) showed substantial hepatobiliary excretion by in vivo positron emission tomography (PET) and also upconversion luminescence imaging (ULI). Ex vivo biodistribution study reinforced the imaging results by showing clearance of 84% of initial hepatic uptake in 72 hours. Hepatobiliary excretion of the UCNPs was also verified by transmission electron microscopy (TEM) examination. Micelle encapsulated (64)Cu-NOTA-UCNPs could be an optimal bimodal imaging agent owing to quantifiability of (64)Cu, ability of in vivo/ex vivo ULI and good hepatobiliary excretion property