1,081 research outputs found

    Neutrino Oscillations at Reactors: What Next?

    Get PDF
    We shortly review past and future experiments at reactors aimed at searches for neutrino masses and mixing. We also consider new idea to search at Krasnoyarsk for small mixing angle oscillations in the atmosheric neutrino mass parameter region.Comment: 9 pages, LaTeX 2.09, 6 Postscript figures. Talk given at Non-Accelerator New Physics Conference, Dubna, 28.06-03.07.199

    Construction, Management and Visualization of 3D Models of Large Archeological and Architectural Sites for E-Heritage GIS Systems

    Get PDF
    In this paper we present an integrated system developed in order to record, construct, pre-process, manage, visualize and visually navigate 3D models reality based of large archeological and architectural sites for eHeritage GIS systems. The framework integrates structured geometrical and documentary information resulting from multiple sources with the aim to enhance the knowledge of those sites within the frame of its historical evolution and its institutional management in a 3D GIS/DB. The developed applications were designed for different types of users, with a largely scalable interface, able to support different output devices and to work at different levels of iconicity. The system allows a full comprehension of the buildings in their own context, permitting to discover unknown relationships, to evaluate their architectural occupancy and to quickly access a complex system of information. The framework has been tested in two different systems - designed and developed to satisfy both internal (cataloguing, documentation, preservation, management of archaeological heritage) and external (communication through the web portal) purposes: the first, in Pompeii, developed in order to have a web-based system that uses Open Source software and complies with national and international standards; the second one, a prototype designed to make available on the Google Earth platform the complete Palladian corpus documentation implemented by the CISAAP

    Viewing Lepton Mixing through the Cabibbo Haze

    Full text link
    We explore the hypothesis that the Cabibbo angle is an expansion parameter for lepton as well as quark mixing. Cabibbo effects are deviations from zero mixing for the quarks but are deviations from unknown mixings for the leptons, such that lepton mixing is veiled by a Cabibbo haze. We present a systematic classification of parametrizations and catalog the leading order Cabibbo effects. We find that the size of the CHOOZ angle is not always correlated with the observability of CP violation. This phenomenological approach has practical merit both as a method for organizing top-down flavor models and as a guideline for planning future experiments.Comment: References added, minor typos fixe

    Final results from the Palo Verde Neutrino Oscillation Experiment

    Get PDF
    The analysis and results are presented from the complete data set recorded at Palo Verde between September 1998 and July 2000. In the experiment, the \nuebar interaction rate has been measured at a distance of 750 and 890 m from the reactors of the Palo Verde Nuclear Generating Station for a total of 350 days, including 108 days with one of the three reactors off for refueling. Backgrounds were determined by (a) the swapswap technique based on the difference between signal and background under reversal of the positron and neutron parts of the correlated event and (b) making use of the conventional reactor-on and reactor-off cycles. There is no evidence for neutrino oscillation and the mode \nuebar\to\bar\nu_x was excluded at 90% CL for \dm>1.1\times10^{-3} eV2^2 at full mixing, and \sinq>0.17 at large \dm.Comment: 11 pages, 8 figure

    Lepton Mixing Matrix in Standard Model Extended by One Sterile Neutrino

    Full text link
    We consider the simplest extension of the standard electroweak model by one sterile neutrino that allows for neutrino masses and mixing. We find that its leptonic sector contains much less free physical parameters than previously realized. In addition to the two neutrino masses, the lepton mixing matrix in charged current interactions involves (n-1) free physical mixing angles for n generations. The mixing matrix in neutral current interactions of neutrinos is completely fixed by the two masses. Both interactions conserve CP. We illustrate the phenomenological implications of the model by vacuum neutrino oscillations, tritium beta decay and neutrinoless double beta decay. It turns out that, due to the revealed specific structure in its mixing matrix, the model with any n generations cannot accommodate simultaneously the data by KamLAND, K2K and CHOOZ.Comment: 14 pages, no figures; version 2: (1) added a short paragraph at the end of subsec 2.2 to record the counting of physical parameters for any numbers of generations and sterile neutrinos for completeness; (2) added a note in ref list, item [18] to quote and comment on an earlier work; (3) added the second paper to ref list, item [17]; (4) fixed typo

    Neutrino oscillations from the splitting of Fermi points

    Full text link
    As was shown previously, oscillations of massless neutrinos may be due to the splitting of multiply degenerate Fermi points. In this Letter, we give the details and propose a three-flavor model of Fermi point splittings and neutrino mixings with only two free parameters. The model may explain recent experimental results from the K2K and KamLAND collaborations. There is also rough agreement with the data on atmospheric neutrinos (SuperK) and solar neutrinos (SNO), but further analysis is required. Most importantly, the Ansatz allows for relatively strong T-violating (CP-nonconserving) effects in the neutrino sector.Comment: 6 pages with jetplFRK.cls, v4: published versio

    Remarks upon the mass oscillation formulas

    Full text link
    The standard formula for mass oscillations is often based upon the approximation tLt \approx L and the hypotheses that neutrinos have been produced with a definite momentum pp or, alternatively, with definite energy EE. This represents an inconsistent scenario and gives an unjustified reduction by a factor of two in the mass oscillation formulas. Such an ambiguity has been a matter of speculations and mistakes in discussing flavour oscillations. We present a series of results and show how the problem of the factor two in the oscillation length is not a consequence of gedanken experiments, i.e. oscillations in time. The common velocity scenario yields the maximum simplicity.Comment: 9 pages, AMS-Te

    Neutrino flavour relaxation or neutrino oscillations?

    Full text link
    We propose the new mechanism of neutrino flavour relaxation to explain the experimentally observed changes of initial neutrino flavour fluxes. The test of neutrino relaxation hypothesis is presented, using the data of modern reactor, solar and accelerator experiments. The final choice between the standard neutrino oscillations and the proposed neutrino flavour relaxation model can be done in future experiments

    Polynomial algorithms for partitioning a tree into single-center subtrees to minimize flat service costs

    Get PDF
    This paper deals with the following graph partitioning problem. Consider a connected graph with n nodes, p of which are centers, while the remaining ones are units. For each unit-center pair there is a fixed service cost and the goal is to find a partition into connected components such that each component contains only one center and the total service cost is minimum. This problem is known to be NP-hard on general graphs, and here we show that it remains such even if the service cost is monotone and the graph is bipartite. However, in this paper we derive some polynomial time algorithms for trees. For this class of graphs we provide several reformulations of the problem as integer linear programs proving the integrality of the corresponding polyhedra. As a consequence, the tree partitioning problem can be solved in polynomial time either by linear programming or by suitable convex nondifferentiable optimization algorithms. Moreover, we develop a dynamic programming algorithm, whose recursion is based on sequences of minimum weight closure problems, which solves the problem on trees in O(np) time

    (3+2) Neutrino Scheme From A Singular Double See-Saw Mechanism

    Full text link
    We obtain a 3+2 neutrino spectrum within a left-right symmetric framework by invoking a singular double see-saw mechanism. Higgs doublets are employed to break SUR(2)SU_{R}(2) and three additional fermions, singlets under the left-right symmetric gauge group, are included. The introduction of a singularity into the singlet fermion Majorana mass matrix results in a light neutrino sector of three neutrinos containing predominantly ναL\nu_{\alpha L}, α=e,μ,τ\alpha=e,\mu,\tau, separated from two neutrinos containing a small ναL\nu_{\alpha L} component. The resulting active-sterile mixing in the 5×55\times 5 mixing matrix is specified once the mass eigenvalues and the 3×33\times3 submatrix corresponding to the MNS mixing matrix are known.Comment: 5 pages, matches published versio
    corecore