
Polynomial Algorithms for Partitioning a Tree into
Single-Center Subtrees to Minimize Flat Service Costs*

N. Apollonio, I. Lari, F. Ricca, and B. Simeone
Dip. Statistica, Probabilità e Statistiche Applicate Università di Roma “La Sapienza”, piazzale Aldo Moro 5,
00185 Roma, Italy

J. Puerto
Universidad de Sevilla Dep. to de Estadistíca e Investigación Operativa, Sevilla, Spain

This paper deals with the following graph partitioning
problem. Consider a connected graph with n nodes, p
of which are centers, while the remaining ones are units.
For each unit-center pair there is a fixed service cost and
the goal is to find a partition into connected components
such that each component contains only one center and
the total service cost is minimum. This problem is known
to be NP-hard on general graphs, and here we show that
it remains such even if the service cost is monotone and
the graph is bipartite. However, in this paper we derive
some polynomial time algorithms for trees. For this class
of graphs we provide several reformulations of the prob-
lem as integer linear programs proving the integrality
of the corresponding polyhedra. As a consequence, the
tree partitioning problem can be solved in polynomial
time either by linear programming or by suitable convex
nondifferentiable optimization algorithms. Moreover, we
develop a dynamic programming algorithm, whose recur-
sion is based on sequences of minimum weight closure
problems, which solves the problem on trees in O(np)
time. © 2007 Wiley Periodicals, Inc. NETWORKS, Vol. 51(1),
000–000 2008

Keywords: tree partitioning; generalized packing problem;
−1,0,1-perfect matrices; maximum closure; dynamic programming;
NP-Complete problems

1. INTRODUCTION

Let G = (V , E) be a connected graph with a set of n
vertices V and a set of edges E. Suppose the subset S ⊂ V is
the set of p = |S| fixed centers, which correspond to service
points, while the subset U = V \ S is the set of the n − p

Received June 2005; accepted September 2006
Correspondence to: N. Apollonio; e-mail: nicola.apollonio@uniroma1.it.
*In memory of Stefano Pallottino
Contract grant sponsor: Spanish Research; Contract grant numbers: MTM
2004:0909, HA2003:0121
DOI 10.1002/net.20197
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2007 Wiley Periodicals, Inc.

units that must be served. Each center in S provides a service,
which is addressed to the units in U. Each unit is required
to be connected – perhaps through other units – to exactly
one center. There is a cost function c : U × S −→ R which
associates a cost cis to each pair (i, s), i ∈ U, s ∈ S. The
objective is to provide service to the set of units, by assigning
each unit to exactly one center at minimum cost. We consider
the case of flat service costs, that is, costs due only to the
assignment of unit i to center s.

This general framework fits a variety of real-life prob-
lems arising in all those service systems in which units must
be assigned to centers and the service costs do not depend
exclusively on the topology of the network or on the inten-
sity of the rendered service (flat service costs). Actually, these
problems can be formulated as graph partitioning ones where
the graph G may be:

a physical graph: the graph corresponds to a TV or optical
fibre cable network, to a pipeline, to a road network, to a
river arm, etc.
a contiguity graph: a territory divided into n elementary
units is given; each vertex of G represents a territorial unit;
an edge between two vertices exists if and only if the two
corresponding units are neighboring.

In both cases, each customer-unit is connected to its center,
say s, by a path and it is said to be served by s. A connected
partition of G is a partition of V into non empty subsets, called
components, such that each component induces a connected
subgraph of G; the partition is centered if each component
contains exactly one center. The cost of a centered partition
of G is given by the sum of the service costs cis, for all i ∈ U,
s ∈ S, such that i is served by s.

The problem can be stated as follows:

Minimum Cost Centered Partition Problem (MCP): Given a
connected graph G, a subset S ⊂ V and a cost function c,
find a connected centered partition of G with minimum cost.

NETWORKS—2008—DOI 10.1002/net

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In the following, we will denote an instance of problem MCP
by (G, S, c).

Notice that, given a cost function c, a minimum cost cen-
tered partition with respect to c remains optimal when a
constant M is added to all the costs, since in each feasible
solution the resulting change of the total cost is M(n − p),
a constant. In particular, by adding to the costs a large pos-
itive M, one can make them strictly positive; by adding a
large negative M, one can make them strictly negative and
then convert the minimization problem into an equivalent
maximization one with positive benefits.

MCP can also be formulated in terms of spanning forests
of G as follows. Let F be a spanning forest of G, and F(G)

be the set of all the spanning forests of G. Let Ts(F) denote
the subtree of F which contains the center s. For the sake of
simplicity, in the following we shall identify the tree Ts(F)

with either its set of vertices or its set of edges, according
to the context. This set will be denoted simply by T when
additional specification is not necessary. Notice that each
spanning forest of G defines a connected partition of G, and
each connected partition of G can be represented by a span-
ning forest of G. Then, problem MCP can be formulated as
the problem of finding a spanning forest of G such that each
tree in F contains exactly one center and the total service cost
is minimized. We can formulate this problem as follows:

min
F∈F(G)

∑
s∈S

∑
i∈Ts(F)

cis : |T ∩ S| = 1, ∀T ∈ F

 . (1)

As an example of application suppose that a company
providing boat repair and maintenance services in dockyards
along a river basin wishes to design service zones for its
dockyards. Each service zone must contain only one dock-
yard, which must be reachable by boat from each village
in the zone. A village can be served by only one dockyard.
Given an estimate of the company revenue when each village
i is served by each dockyard s, the service zones should be
planned so as to maximize total revenue. This case is of par-
ticular interest since the typical structure of a river basin is
tree-like.

Other real-life applications can be found in the manage-
ment of optical fibre networks, highway networks, airlines
routes networks, telephone networks. In all these cases the
assumption of a tree-network is quite reasonable. For exam-
ple, highway systems often have a tree structure, while
airlines route structures and sector or area telephone net-
works are often configured as a set of connected star-like
trees [17].

Some interesting applications of MCP are related to
telecommunication network problems. Consider a network
infrastructure, such as a cable tv network, and suppose that
centers correspond to broadcasting stations, while units are
those nodes in the network that must be served. In many cases
the network is property of the State, which gives the network
out by contract to different private providers. In this case the

network must be partitioned into connected subnetworks per-
taining to different providers, for ease of maintenance and in
order to avoid control conflicts. The costs associated with
each center-unit pair correspond to the bid of the provider
of the center to obtain the unit and mainly depend on mar-
keting policies, spurs, and local factors related both to the
center and to the unit. To guarantee that the providers charge
low rates to the customers/citizens, the State will partition the
network among the providers in order to minimize the total
cost. On the other hand, if the owner of the infrastructure
network is a private enterprise, the bids of the local providers
may be regarded as owner’s returns rather than collectivity
costs; in this case the owner wishes to maximize its total
return. This problem can again be modelled as a MCP one in
maximization form. Notice that when the network is located
in an elongated region, such as a coastal one, or when it is
an early-stage network structure in a developing country, the
hypothesis of a tree network is realistic.

Finally, we should mention that the initial motivation of
our work was an application to political districting (PD)
which consists in drawing a district map for political elec-
tions. It can be formulated as an MCP when the territory
involved is represented by a contiguity graph. The fact that
one looks for a connected partition reflects the usual conti-
guity requirement for the territorial units of a district. Other
typical PD criteria are population balance and compactness.
The former criterion is often enforced by bounds on the dis-
trict population, while the latter one can be met through the
minimization of the moment of inertia w.r.t. the district cen-
ter (see, for example, Ref. [8]). Notice that, when inertia is
adopted as a measure of compactness, for each district some
vertex must be identified as the center of that district. Actu-
ally, there are a variety of other compactness measures that
are defined on the basis of district centers [10]. Thus, the PD
problem can be formulated as an MCP with side population
balance constraints. However, by including such constraints
into a lagrangean objective function, one obtains an MCP as
in (1).

Besides being motivated by a variety of real-life applica-
tions the study of MCP on trees is theoretically justified by
the status of its complexity. As a matter of fact, in Ref. [4]
it has been shown that problem MCP is NP-hard on gen-
eral graphs even in the case of two centers. Then the natural
question that arises is whether the same problem is polyno-
mially solvable in simpler graph topologies. As for some
well-known problems in location analysis, such as the p-
center or p-median [13,14], this is the case when the model is
restricted to tree networks. Finally, our interest in problems
over trees arises also from the following theoretical result,
proven in Refs. [2, 3, 15, 16]: for a broad class of objective
functions arising in numerous applications and for any con-
nected graph G, there is always a spanning tree T of G such
that some optimal connected partition of T is also an opti-
mal connected partition of G. The proof is non constructive,
but it leads to an effective heuristic for finding a “good”
connected partition of G through the (optimal or approxi-
mate) solution of a sequence of restrictions of the problem to

2 NETWORKS—2008—DOI 10.1002/net

FIG. 1. Consider the tree in (a), where black vertices are fixed as centers
and the numbers refer to the costs cis for each unit-center pair (i, s). In (b)
the solution found by the greedy algorithm is shown, while (c) shows the
optimal solution.

spanning trees of G (see [15]). These results easily extend to
our problem.

Thus, the main goal of this paper is to answer whether
MCP is polynomially solvable on trees. Looking for an
answer to this question, the reader may notice that the feasi-
ble solutions to MCP correspond to the bases of a matroid on
the set of edges of the input graph. Nevertheless, the greedy
algorithm does not apply here. The trouble is that the costs
are defined on unit-center pairs, rather than on the elements
of the ground set, namely, the edges (see Fig. 1). It is worth
observing that if 10 is replaced by an arbitrarily large num-
ber M in Figure 1, the Greedy Algorithm may perform as
badly as possible. This feature makes this problem even more
challenging.

In this paper we provide some polynomial time algorithms
for MCP on trees. First of all, in spite of the discrete nature of
the problem, we derive an LP formulation, whose coefficient
matrix has −1,0,1 entries and hence is solvable in strongly
polynomial time. Then, we obtain an alternative formulation
with a smaller number of variables where a piecewise-linear
concave function must be maximized subject to linear con-
straints. The latter problem can be solved in polynomial time,
too, and the resulting complexity is typically lower. Finally,
we describe a combinatorial algorithm with O(np) complex-
ity in which dynamic programming techniques are combined
with maximum weight closure ones.

The paper is organized as follows. In Section 2 we provide
two Integer Linear Programming models for the MCP prob-
lem on trees and prove the integrality of the feasible polyhedra
of their continuous relaxations: in Section 2.1 we provide a
generalized set packing formulation of the problem, while in
Section 2.2 we provide a branching formulation of the same
problem. Section 3 describes a fast polynomial time algo-
rithm for trees, while Section 4 is devoted to some further
complexity results.

2. LINEAR AND NONLINEAR PROGRAMMING
MODELS FOR TREES

In this section we present two Integer Linear Programming
formulations for problem MCP on trees. Both formulations
are interesting on their own because the corresponding poly-
hedra are integral and highlight different aspects of the

problem: while the first one relies on the intersection proper-
ties of the family of centered partitions, the second one relies
on the directed branching nature of such partitions. Moreover,
they are concise in the sense that they use only polynomially
many constraints and variables; furthermore, their coeffi-
cient matrices have −1,0,1 entries. Therefore, in both cases
strongly polynomial time linear programming algorithms can
be found. In addition, the latter linear program can be refor-
mulated as the maximization of a concave nondifferentiable
function subject to linear constraints. Although this problem
is nonlinear, its size is much smaller. In this way we trade
size for nonlinearity with an overall complexity saving. For
a proof of the complexity bounds in this section we refer the
reader to Ref. [1].

Given a tree T = (V , E), |V | = n, as before we denote by
U the set of all units and by S the set of all centers. Given a
unit i ∈ U and a center s ∈ S, let us define a path from i to s to
be free if it does not contain any center but s. For each unit i,
we define the set Si = {s : the path from i to s is free}. Notice
that i can be served only by the centers in Si. Moreover, we
denote by c(i) = (cis)s∈Si the cost vector restricted to the
pairs (i, s), s ∈ Si.

The following lemma shows that, without loss of gen-
erality, in a tree one may assume that centers and leaves
coincide.

Lemma 1 (Leaf Property). Any instance (T , S, c) of MCP,
where T is a tree and S, c are arbitrary, can be reduced,
preserving optimality, to a set of independent instances
(Ti, Si, c(i)), i = 1, 2, . . . , k, k ≤ n − p, where the Ti’s are
subtrees of T such that: (1) the union of all the Ti’s is equal
to the whole tree T; (2) any pair of subtrees Ti and Tj, i �= j
intersects in at most one node, this node being a center; (3)

Si is the set of leaves of Ti.

Proof. Instead of giving a formal proof, we refer the
reader to Figure 2, which captures the gist of the proof. ■

On the basis of the result of Lemma 1, from now on, we
assume that in our trees the leaves and the centers coincide.

Notice that in a tree, removing (cutting) p−1 edges results
into a connected partition of T into p components, and every
connected partition can be obtained in this way.

2.1. A Generalized Set Packing Formulation

In the first formulation we use the binary variables:

yis =
{

1 if unit i is assigned to center s
0 otherwise.

(2)

In the following model we use order constraints, so that the
partition is connected, and multiple choice constraints so
that each unit is assigned to exactly one center. These con-
straints guarantee that the partition is centered. The Integer

NETWORKS—2008—DOI 10.1002/net 3

FIG. 2. Any instance of MCP on a tree T can be reduced to a set of inde-
pendent instances of MCP on subtrees of T and the set of the centers of T
coincides with the set of leaves of the subtrees of T : (a) A tree T ; (b) Any
center in T is a leaf in at least one subtree of T ; (c) Any leaf in the subtrees
of T is a center of T . [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

Linear Programming model based on order constraints is the
following:

min
∑
i∈U

∑
s∈S

cisyis

yis ≤ yjs ∀i ∈ U, j ∈ U, s ∈ S

such that j lies in Pis∑
s∈S

yis = 1 ∀i ∈ U

yis ∈ {0, 1} ∀i ∈ U, s ∈ S (3)

where Pis is the unique path from i to s in the tree T . This
model has O(np) variables and O(n2p) constraints. Actually,
the ILP model (3) admits a more concise formulation. For
any given pair (i, s), i ∈ U, s ∈ S, such that i is not adjacent
to s, let j(i, s) be the vertex adjacent to i in the unique path
from i to s. Then, by transitivity, the O(n2p) order constraints
in (3) are equivalent to the O(np) order constraints:

yis ≤ yj(i,s)s i ∈ U, s ∈ S, is �∈ E. (4)

Hence (3) can be reformulated as

min
∑
i∈U

∑
s∈S

cisyis

yis ≤ yj(i,s),s ∀i ∈ U, s ∈ S, is �∈ E∑
s∈S

yis = 1 ∀i ∈ U

yis ∈ {0, 1} ∀i ∈ U, s ∈ S. (5)

An integral feasible solution to (5) (and hence to (3))
will be called a consistent assignment. Let M be the 0,1,
−1 coefficient matrix of (5) – or of (3) – and let n(M)

be the column vector whose i-th component is the number
of −1’s in the i-th row of M. The fractional generalized
set packing polytope (see for instance Ref. [5]) is the set
{y : My ≤ 1 − n(M), 0 ≤ y ≤ 1}, where 0 and 1 are
the vectors whose components are all equal to 0 and to 1,

respectively. After replacing in (5)- or in (3)- the equations
by inequalities of the ≤ type and the integrality constraints
by the non negativity constraints yis ≥ 0, one sees that the
corresponding feasible polytope is precisely of the fractional
generalized set packing type (inequalities y ≤ 1 are already
implied by the multiple choice constraints). Remark that there
is exactly one component equal to−1 in each row correspond-
ing to an order constraint and none in each row corresponding
to a multiple choice constraint.

Remark 1. Notice that if either the multiple choice con-
straints or the order constraints are deleted, the constraint
matrix of the resulting system is totally unimodular. In partic-
ular, when the cost function is metric, i.e., when there exists
a metric d on V × V such that cis = d(i, s) for each i ∈ U
and s ∈ S, the order constraints in (5), being redundant,
can be deleted and the corresponding polytope is integral.
However the overall matrix is not totally unimodular. In fact,
M is not even balanced. Indeed M can contain an unbal-
anced cycle submatrix. Recall (see for instance Ref. [5]) that
an unbalanced cycle submatrix of a 0,1, −1 matrix A is a
square submatrix having exactly two nonzero entries per row
and per column and such that the sum of its entries is not
a multiple of four. The reader can verify that a cycle of this
type can be found in a 2-spider (i.e., a tree obtained from a
star by the insertion of a node within each edge). It is worth
noticing that, for any instance of MCP on a tree T, every
unbalanced cycle submatrix of the coefficient matrix of (5)

intersects an odd number of rows corresponding to multiple
choice constraints. Moreover, the sum of the coefficients of
every order constraint is zero.

After Remark 1, the constraint matrix M is not balanced
(hence not totally unimodular). Nonetheless it is still a nice
matrix. Recall that a −1,0,1-matrix is perfect if and only if
the corresponding generalized packing polytope is integral
(see Ref. [5]).

Theorem 1. The 0,1, −1 coefficient matrix M of (5) is
perfect.

Proof. Let us replace the equations in (5) by inequalities
of the ≤ type, and let Q be the resulting feasible polytope.
We need to show that Q is integral. Let y be an arbitrary point
of Q. For each s ∈ S, let Hs ≡ Hs(y) = {i : i ∈ U, yis > 0}
and let H ≡ H(y) = H1 ∪ . . . ∪ Hp.

Then, in view of the order constraints in (5) - or equiva-
lently of (3) - the following property holds:

i ∈ Hs and j ∈ Pis ⇒ j ∈ Hs. (6)

Claim: H can be partitioned as H = U1 ∪ . . . ∪ Up, where,
for each s ∈ S, Us ⊆ Hs and {s} ∪ Us induces a subtree of T
(Us is allowed to be empty).

The required partition can be obtained as follows:

U1 = H1; U2 = H2 \H1; · · · ; Up = Hp \(H1 ∪· · ·∪Hp−1).

4 NETWORKS—2008—DOI 10.1002/net

The fact that {s} ∪ Us induces a subtree of T for each
s ∈ S follows from (6). Notice that any two such subtrees
are disjoint. Therefore, the collection of all such subtrees is
a centered (but generally non spanning) forest of T .

Hence, if one defines vis = 1 if i ∈ Us and vis = 0
otherwise, one gets an integral feasible point (and thus an
extreme point) v of the polytope Q .

Now let δ be the smallest positive component of y, and
let y′ = y − δv. Then y′ still belongs to Q and has at least
one more null component than y. In this way, starting from
y0 = y, one obtains a sequence y0, y1, . . ., of points of Q such
that, for each k, yk+1 = yk − δkvk , where δk > 0 and vk is a
binary point of Q. Since each yk+1 has at least one more null
component than yk , there must be a smallest N ≤ (n − p)p
such that yN+1 = 0. Hence one gets

y = δ0v0 + · · · + δN vN . (7)

Let yN
is be a positive component of yN . Since the sequence

{yk
is} is nonincreasing, for each k = 0, 1 . . . , N , one has yk

is >

0 . Hence i ∈ H(yk) . Therefore,

vk
i1 + . . . + vk

ip = 1 (8)

From (7) and (8) it follows that

δ0 + . . . + δN = yi1 + · · · + yip ≤ 1

Since the null vector 0 is an (extreme) integral point of Q,
the point y can be written as a convex combination of N + 1
integral points of Q, namely,

y = (1 − δ0 . . . − δN)0 + δ0v0 + . . . + δN vN .

In conclusion, Q is the convex hull of its integral points;
therefore, Q is integral. ■

Remark 2. Since N ≤ (n − p)p, we have actually given a
direct proof of Carathéodory’s Theorem for the polytope Q.

Corollary 1. The feasible polytope P of (5) is integral.

Proof. P is a face of Q. ■

Remark 3. Whereas the extreme points of Q correspond
to (possibly non spanning) centered forests, those of P
correspond to spanning centered forests.

After Corollary 1 one can solve (5) by linear program-
ming. Since all entries of the matrix M are −1,0, or 1 the
corresponding linear program can be solved in strongly poly-
nomial time after a well known result of Tardos (1986) (see
Ref. [18]). Tardos’ bound in our case is O((np)6) and thus
it is much lower than in the general case (details and further
results can be found in Ref. [1]).

Theorem 1 exploits the intersection properties of the fam-
ily of the consistent assignments of T ; such properties are
inherited by the “chordal graph” structure of the family of

centered partitions of T . The next Theorem 2 provides a
deeper insight about the nature of the polytope Q. To elicit
this nature consider the family T of all subtrees of T contain-
ing exactly one center and at least one unit. Each member
T ′ of T is thus a subtree of T induced by a set of the form
{s} ∪ U ′, for some s ∈ S and some non empty subset U ′ of
units. Let G(T) ≡ G be the intersection graph of T : the ver-
tex set of G is T and two vertices are joined by an edge in G
if the corresponding subtrees intersect. The following result
gives us a view of the structure of Q in terms of the clique
polytope Q(G) of the chordal graph G, namely, the polytope

Q(G) =
{

x ∈ R
T+ :

∑
v∈K

xv ≤ 1, ∀K ∈ K, xv ≥ 0, ∀v ∈ V(G)

}
,

where K is the family of maximal cliques of G.

Theorem 2. The polytope Q is the image of the clique
polytope Q(G) of G under an integral linear mapping.

Proof. Let F be any centered (not necessarily spanning)
forest of T and let F1, . . . Ft , t ≤ p, be the components of F
containing at least one unit. Let sh ∈ S be the only center in
Fh, for h = 1, . . . , t. The correspondence between centered
forests of T and integral (extreme) points y of Q, stated in
Remark 3 is the bijection defined by:

yish = 1 ⇔ i ∈ Fh, h = 1, . . . t.

Moreover,

y = uF1 + · · · + uFt , (9)

where, for h = 1, . . . t, uFh

is = 1 if i ∈ Fs and s = sh, uFh

is = 0
otherwise. Thus,

S = {F1, . . . , Ft} ↔ y = uF1 + · · · + uFt (10)

sets a one-to-one correspondence between the family of stable
sets of G and the set of integral points of Q. The graph G is
chordal, hence perfect. It follows that Q(G) is the convex hull
of the incidence vectors of its stable sets. Therefore, (10) sets
a one-to-one correspondence between the extreme points of
Q(G) and those of Q. It remains to prove that every extreme
point of Q is the image of an integral extreme point of Q(G)

under a linear integral mapping. Let T ′ be any member of T
and let s be the unique center in T ′. Let uT ′

be the vector whose
entries are indexed by U × S and are defined by uT ′

it = 1, if
t = s and i ∈ V(T ′) \ {s} and uT ′

it = 0 otherwise. Let C be
the matrix whose columns are the vectors uT ′

for T ′ ∈ T .
By (10), y = CχS is an integral point of Q, where χS is the
incidence vector in T of the stable set S of G, and C defines
the required integral linear mapping. ■

NETWORKS—2008—DOI 10.1002/net 5

2.2. An Optimal Branching Formulation

An alternative Integral Linear Programming formulation
for problem MCP on trees can be obtained on the basis of
the notion of consistent orientation, which provides a dif-
ferent, but useful, perspective on the problem. Given an
instance (T , S, c) of MCP, a consistent orientation of T is
an orientation of some of the edges of T such that:

(i) for each undirected edge ij, at most one of the two arcs
(i, j) and (j, i) is present;

(ii) the outdegree of each unit is 1;
(iii) the outdegree of each center is 0 (centers must be roots).

Notice that some edges of T remain undirected. Consistent
orientations correspond to a special kind of antibranchings
(in-forests, assembly forests): they must also be spanning and
centered (in each component the root is the unique center).

Proposition 1. In any consistent orientation of T, the
number of undirected edges is |S| − 1.

Proof. The total number of vertices, centers, and units
are equal to n, p, and n − p, respectively. After property (ii),
the total number of arcs is n−p, so the number of undirected
edges is n − 1 − (n − p) = p − 1. ■

Proposition 2. There is a one-to-one correspondence
between centered partitions and consistent orientations of
T .

Proof. With any centered partition π of T , we associate
an orientation ω of some edges of T as follows. For each unit
i, let s be the unique center serving i, and let e be the first
edge along the path from i to s. Direct e out of unit i. All
the edges that are cut in π remain undirected. Clearly, ω is a
consistent orientation. Conversely, given any consistent ori-
entation of T , the connected components of the corresponding
antibranching define a centered partition π of T . ■

For any consistent orientation ω and each unit i, there is
a unique directed path from i to a center s(i), the one that
serves i in the centered partition associated with ω. Then, the
cost of any consistent orientation ω is given by∑

i∈U

cis(i).

Notice that the cost of ω coincides with the cost of the
centered partition π associated with ω. Then, consider the
following problem:

Minimum Cost Consistent Orientation Problem (MCO):
Given a tree T , a set of centers S and a cost function c, find a
consistent orientation of T with minimum cost.

In view of Proposition 2, we obtain the following result.

Theorem 3. In the case of trees, problems MCP and MCO
are mutually reducible in polynomial time.

Now let us formulate an Integer Linear Programming
model for MCO. We shall adopt, without loss of general-
ity, the maximization form of MCO (with respect to benefits
c′

is instead of costs cis). Given a consistent orientation ω, for
each edge ij of T introduce binary variables xij and xji; for
each unit i and each center s, introduce binary variables yis,
with the following meaning:

xij =
{

1 if (i, j) is an arc in ω

0 otherwise,

yis =
{

1 if s = s(i)
0 otherwise.

Thus, the xij’s are decision variables that define the orientation
ω, while the yis’s are auxiliary variables which are needed in
order to compute the total benefit of ω as a linear function.

Let D be the symmetric digraph (V , A), where A =
{(i, j), (j, i) : ij ∈ E}, and let Ais be the set of arcs of the
elementary directed path in D from i to s. Then MCO admits
the following ILP formulation:

max
∑
i∈U

∑
s∈S

c′
isyis

xij + xji ≤ 1 ∀ij ∈ E (a)∑
j:(i,j)∈A

xij = 1 ∀i ∈ U (b)

xsf = 0 ∀s ∈ S, (s, f) ∈ A (c)

yis ≤ xhk ∀i ∈ U, s ∈ S, (h, k) ∈ Ais (d)

xij ∈ {0, 1} ∀(i, j) ∈ A (e)

yis ∈ {0, 1} ∀i ∈ U, s ∈ S. (f) (11)

Constraints (a), (b), and (c) enforce properties (i), (ii),
and (iii) of consistent orientations, respectively. The order
constraints (d) and the strict positivity of the benefits c′

is imply
that, in every optimal solution of (11),

yis = min
(h,k)∈Ais

xhk =
∏

(h,k)∈Ais

xhk , i ∈ U, s ∈ S (12)

where the second equality holds since the variables xhk are
binary. Thus, yis = 1 iff in ω there is a directed path from
i to s. It follows that the objective function represents the
total benefit of the consistent orientation ω. The above model
involves O(np) variables and O(n2p) constraints.

Consider the continuous relaxation of (11) obtained by the
replacement of (e) and (f) by the non negativity constraints
xij ≥ 0 and yis ≥ 0, respectively; and let K be the corre-
sponding feasible polytope. In view of Theorems 1 and 3, the
following result is not surprising.

Theorem 4. The polytope K is integral.

Proof. It will be enough to exhibit an integral linear
mapping

y �→
[

x
y

]
=

[
B
I

]
y

6 NETWORKS—2008—DOI 10.1002/net

that maps the integral polytope P of (5) into K . Then the
(integral) extreme points of P are mapped into extreme
points of K (indeed any convex combination of points of
K defines a convex combination with the same coefficients
of the y-components of these points). Moreover, since the
transformation is integral, also the latter ones are integral.

Let ij be any edge of T . Let us denote by Ti
ij and Tj

ij the two
branches of T resulting from the deletion of ij and containing
i and j, respectively. For any subtree T ′ of T , let Lv(T ′) be
the set of leaves of T ′.

Given a point y ∈ P, let x = By be the vector whose
components are given by

xij =
{∑

s∈Lv(T j
ij)

yis if i �∈ S, (i, j) ∈ A

0 if i ∈ S, (i, j) ∈ A.
(13)

Then (c) holds by definition. Let us show that (a), (b), (d)
also hold.

Let ij ∈ E. Then after (5) one has
∑

s∈S yis = ∑
s∈S yjs =

1 and yis ≤ yjs for each s ∈ Lv(Tj
ij). Thus

xij =
∑

s∈Lv
(

T j
ij

) yis ≤
∑

s∈Lv
(

T j
ij

) yjs = 1 − xji.

So (a) are satisfied. Furthermore, for each i ∈ U,∑
(i,j)∈A

xij =
∑

(i,j)∈A

∑
s∈Lv

(
T j

ij

) yis =
∑
s∈S

yis

so (b) also hold. Finally, for each (h, k) ∈ Ais, one has s ∈
Lv(Tk

hk), and thus

yis ≤ yhs ≤
∑

t∈Lv
(

T k
hk

) yht = xhk .

Hence (d) hold as well.
In conclusion, the linear transformation (13) maps P into

K . Moreover, it maps integral points of P into integral points
of K . Hence the statement follows. ■

As in the case of (5), one may obtain a concise reformula-
tion of (11) involving O(np) variables and O(np) constraints
only. It is enough to replace the order constraints (11.d) by
the order constraints:

yis ≤ yj(i,s)s i ∈ U, s ∈ S, is �∈ E

yis ≤ xij(i,s) (14)

where the index j(i, s) has the same meaning as in (5). Let us
denote by (ILP2) the resulting ILP, and its continuous relax-
ation by (LP2). The ILP’s (11) and (ILP2) are "equivalent",
in the sense that every feasible solution to (ILP2) is feasible
also in (11) (since, by transitivity, constraints (14) imply con-
straints (11.d)), and in the opposite direction, in view of (12),
every optimal solution to (11) is optimal also in (ILP2). The
same kind of equivalence holds for the continuous relaxation

of (11) and (LP2). Needless to say, also (LP2) can be solved
in O((np)6) time by Tardos’ algorithm.

Summing up, in order to solve (11) it is enough to solve
its continuous relaxation by linear programming. It should
be noticed that in every optimal solution to the continuous
relaxation the first equality of (12) must still hold. It follows
that (11)-or (ILP2)- can be equivalently reformulated as:

max
∑
i∈U

∑
s∈S

c′
is min

(h,k)∈Ais

xhk

xij + xji ≤ 1 ∀ij ∈ E∑
j:(i,j)∈A

xij = 1 ∀i ∈ U

xsf = 0 ∀s ∈ S, (s, f) ∈ A

xij ∈ {0, 1} ∀(i, j) ∈ A. (15)

We have obtained a linearly constrained piecewise-linear
concave maximization problem having only 2n − p − 2
variables, which can be effectively solved by nondifferen-
tiable convex minimization methods [6, 9, 12]. Notice that
the coefficient matrix of (15) is totally unimodular and that
the extreme points (which are integral) are precisely the inci-
dence vectors of the centered spanning antibranchings of D.
Moreover, the objective function of (15) (restricted to the
vertices of the unit hypercube) is a polynomial in boolean
variables with nonnegative coefficients. Therefore, (15) can
also be seen as a (strongly polynomial time solvable) special
case of the problem of maximizing a supermodular func-
tion over the family of the common independent sets of two
matroids, which is in general hard to solve and contains
ordinary NP-complete instances.

Problem (15) can be solved in polynomial time by binary
search over a threshold z on the value of its objective function
f (x). At each iteration of the binary search one finds a point
(if any) of a certain convex set C(z) by the algorithm in Ref.
[19]. Let Cmax be the maximum absolute value of the c′

is’s.
The overall complexity of such procedure (see Ref. [1]) is
O((n6p2+n5p log Cmax)(log Cmax+log(np))) which is better
than the complexity of Tardos’ algorithm when p is not too
small and Cmax is not too large.

The above nonlinear approach becomes particularly
attractive when (NP-complete) capacitated versions of MCO
are dealt with and one wants to find good bounds on the
optimum.

In conclusion, we have shown the polynomial time solv-
ability (although with relatively high complexity) of the
equivalent problems MCP and MCO. In the next section,
we shall derive an O(np) algorithm based on a combination
of dynamic programming and maximum weighted closure
procedures.

3. A LINEAR TIME COMBINATORIAL ALGORITHM

In this section we describe a O(np) polynomial algorithm
for partitioning a tree into single-center subtrees so as to min-
imize (maximize, resp.) flat service costs (benefits, resp.).

NETWORKS—2008—DOI 10.1002/net 7

Notice that such complexity is linear in the input size. In the
following we shall adopt the minimization form of MCP.

Before describing the algorithm, we introduce some def-
initions and notation. For any undirected or directed graph
G, we denote by V(G) its vertex-set. Let T = (V , E) be an
arbitrary rooted tree. As usual, we denote by (i, j) an edge
directed from node i to node j. Node i is said to be the pre-
decessor (or the father) of j and node j is a successor (or a
child) of i. The set of predecessors and successors of node
i are denoted by Pred(i) and Succ(i), respectively. If there
is a directed path from node i to node j, then i is called an
ancestor of j, and j a descendant of i. We regard i to be both
an ancestor and a descendant of itself. The set of ancestors
and descendants of node i are denoted by Anc(i) and Desc(i),
respectively. For a given node i the closure of i is any subset
of nodes such that, whenever it contains node i, it contains
all the predecessors (and hence all the ancestors) of i. If Z is
any subset of nodes, the cocycle ∂Z of Z is the set of all edges
with exactly one vertex not in Z . We call the downtree of T
at v, and denote it by Tv, the subtree of T rooted at v induced
by Desc(v). Given an edge (u, v), the partial downtree Tuv is
the subtree of T induced by u ∪ Desc(v). The subtree Tuv is
rooted at u and it is obtained from Tv by the addition of the
edge (u, v).

In the following we assume that T is rooted at one of its
units, say r. We are going to describe a polynomial algorithm
for solving MCP which is based on a bottom-up dynamic pro-
gramming recursion. In order to implement such a recursion,
a sequence of minimum weight closure problems on trees is
solved.

Recall that for a given directed graph (N , A) and any
weight function w on the vertices, a subset X ⊆ N is a closure
of N if i ∈ X implies j ∈ X for any j successor of i. As usual,
the weight function w is extended to subsets by additivity:
w(U) ≡ ∑

h∈U wh, U ⊆ N . The minimum weight closure
problem (MWC) is to find a closure X̄ of N with minimum
weight:

w(X̄) = min
X closure of N

∑
i∈X

wi.

Let i be a unit, Ti the downtree of T rooted at i, and l an
arbitrary center (leaf) of Ti. We define zil to be the minimum
service cost of any centered partition of Ti, subject to the
condition that i is served by l; we shall also define

zi = min{zil|l is a center of Ti}. (16)

Thus, zi is just the minimum service cost of any centered
partition of Ti. Denote by �is the set of all centered partitions
of Ti such that i is served by s. The dynamic programming
algorithm starts from those nodes g that are predecessors of
leaves l. Clearly,

zgl = cgl.

Now, consider an arbitrary unit i and assume that, for each
child j of i and each center t in Tj, all values zjt have been pre-
viously computed by the dynamic programming algorithm.
Assume also that the zh values are stored for each proper

FIG. 3. The white vertices are assigned to center s, while the vertices in
grey are assigned to some center different from s.

descendant h of node i. Let s be any center in Ti. Then, in
any cheapest centered partition of Ti where i is served by s,
all nodes along the directed path Pis, from i to s, are also
being served by s. Moreover, if Tv is an arbitrary downtree
whose root v has its father f in Pis, some units of Tv may
also be served by s (see Fig. 3). The set R of all such units
must induce a subtree of Tv rooted at v. Notice that this sub-
tree depends only on Tv and Pfs, but is independent of other
similar downtrees Tv′ (where the father of v′ lies in Pis), no
matter whether v′ has the same father as v or not. Indeed, the
fact that a certain unit h belongs to R is influenced only by
the nodes along the path from h to s and by the descendants
of h in Tv. Therefore, we can restrict our attention to a single
such downtree Tv.

In order to compute the value zis (and hence zi) using the
dynamic programming recursion, we need to find the above
set R efficiently. One should notice that this is in itself a
problem of type MCP, where T is replaced by the partial
downtree Tfv and f becomes a center with service costs chf =
chs for all the units h of Tfv. To find R, consider the subtree
Uv induced by all units of Tv. For each node h of Uv consider
the following three weights:

uh = chs, (17)

lh = zh −
∑

m∈Succ(h)

zm (18)

wh = uh − lh. (19)

We will refer to uh, lh, and wh as the upper weight, the
lower weight, and the weight of h, respectively.

Remark 4. In view of the above formulas (17), (18), (19),
the weight wh can be rewritten as

wh = chs −

zh −

∑
m∈Succ(h)

zm

 . (20)

The above expression has an interesting economic interpre-
tation: at node h two options are possible: (i) h is served by

8 NETWORKS—2008—DOI 10.1002/net

s, or (ii) h is served by some leaf of the downtree Th. Then
the weight wh is actually the marginal cost of option (i) w.r.t.
option (ii).

Lemma 2. For each node h of Uv, one has

zh =
∑

k∈Desc(h)

lk . (21)

Proof. By induction on the depth of h. If h is a leaf of
Uv, then Desc(h) = {h}, Succ(h) = ∅ and both (18) and (21)
amount to lh = zh. Assume that (21) holds for each node of
depth d − 1, and let h have depth d. One has from (18)

zh = lh +
∑

m∈Succ(h)

zm,

and from the inductive hypothesis,

zh = lh +
∑

m∈Succ(h)

∑
k∈Desc(m)

lk .

■

Theorem 5. Let i be any node of T, s a leaf of Ti and Pis

the directed path from i to s in T. Let v be a unit outside Pis

whose father f belongs to Pis. Finding the set R of those units
of Tv that are served by s in some cheapest partition of �is

is reducible to the minimum weight closure problem in the
rooted tree Uv with node weights wh.

Proof. First of all, notice that a subset of nodes of a tree
rooted at v is a closure if and only if it is either empty or it
induces a subtree with root v. Let π be a cheapest partition
in �is, and let R be the set of units of Tv that are served by
s in π . Let ∂R be the cocycle of R in Uv. Since R is either
empty or it induces a subtree of Tv with the same root v, R
is a closure of Uv. Furthermore, the set R must be chosen so
as to minimize the overall contribution of Tv to the service
cost of π . Such contribution, in view of the decomposition
followed in the algorithm, is equal to

γ (R) =
∑
h∈R

chs +
∑

(p,q)∈∂R

zq

by Bellman’s Optimality Principle

=
∑
h∈R

uh +
∑

(p,q)∈∂R

∑
k∈Desc(q)

lk by (21)

=
∑
h∈R

uh +
∑

k∈V(Uv)\R

lk since R is a closure in Uv

=
∑
h∈R

wh +
∑

k∈V(Uv)

lk by (19)

= w(R) + zv by (21).

Conversely, if R is a closure, then the above identities hold in
reverse order. Therefore, γ (R) and the weight of R differ by
a constant, and the statement follows. ■

On the above grounds, it follows from Bellman’s Opti-
mality Principle that each zis satisfies the recursion:

zis = cis + zv′s +
∑

v∈Succ(i)−{v′}
γvs, (22)

where v′ is the successor of i along Pis, and γvs is equal
to zv plus the minimum weight of a closure in Uv, with
node weights wh given by (19). Notice that these node
weights depend on the values zh for all units h of Uv, which
have already been computed before node i is processed.
In the above recursive formula we consider the following
provisions:

if i is a leaf of Ur :

zis = cis; (23)

if i is not a leaf of Ur but it is adjacent to s in T :

zis = cis +
∑

v∈Succ(i)

γvs. (24)

A pseudocode of the dynamic programming procedure is
shown in Figure 4. The minimum weight closure problem on
a tree can be solved by the linear time algorithm in Ref. [11].
The algorithm is based on the following property:

Property 1. If l is a leaf of the tree and f is its father then:

• if wl ≥ 0 then there exists an optimal closure R such that
l /∈ R;

• if wl < 0 then in any optimal closure R, if f ∈ R then
l ∈ R.

algorithm FIND-MCP
input: An instance (T , S, c) of MCP.
output: A Minimum Cost Centered Partition of T .
begin
visit the tree Ur bottom-up in reverse bfs order

for each visited unit i do
for each unit v ∈ Succ(i) do

for each center s in Ti but not in Tv do
for each unit h of Uv

compute the weights wh according to (19);
end for
compute a minimum weight closure Rvs in Uv;
γvs := w(Rvs) + zv;

end for
end for
for each center s in Ti do

compute zis according to (22), (23) or (24);
end for
compute zi and li according to (16) and (18) resp.;

end for
recover an optimal partition of T by a top-down visit of Ur;

end

FIG. 4. A pseudocode of the dynamic programming procedure for finding
a MCP.

NETWORKS—2008—DOI 10.1002/net 9

In view of the above property one can either delete or con-
tract edge f l, obtaining a tree of smaller size. The algorithm
visits the tree bottom-up in reverse breadth first search order
performing the two above reductions until a single node is
obtained.

At the end of the dynamic programming procedure, an
optimal partition can be recovered by the following pro-
cedure: start from the root r and let zrs = zr ; obtain the
component Cs as the union of all closures Rvs such that v is
not in Prs but it is adjacent to a vertex in Prs; delete Cs from T
and restart the procedure from any tree of the resulting rooted
forest.

3.1. Complexity Analysis

In FIND-MCP, the reverse breadth first search visit of the
tree ensures that each time a formula is applied the values
in the right hand side have been already computed. Thus, wh

can be obtained in constant time, γvs in O(|Rvs|) time, zis in
O(|Succ(i)|) time, zi in O(p) time and li in O(|Succ(i)|) time.
So, computing all zis, zi and li requires O(np) time.

For each center s and for each tree Uv such that unit v does
not lie in Prs but it is adjacent to a vertex in Prs, algorithm
FIND-MCP computes the weights wh, solves a minimum
weight closure problem and computes the γvs in time linear
in the number of vertices of Uv (see Fig. 3). Since, for each
center s, the trees Uv defined above are mutually disjoint, the
time complexity for computing the weights wh, solving the
minimum weight closure problems and computing γvs for all
centers in S is O(np).

The optimal partition can be obtained in O(n) time by the
recursive procedure described at the end of Section 3.

The resulting overall time complexity of algorithm FIND-
MCP is O(np).

We do not see how the above O(np) complexity could be
improved. In fact, if an arbitrary cost is changed, the optimal
solution may change. Hence, one has to look to all the O(np)

costs in order to compute the optimal solution.

4. FURTHER COMPLEXITY RESULTS

The aim of the present section is to give more insights
on the hardness of MCP on a general graph G = (V , E).
Any instance of MCP takes the form (G, S, c). In Ref. [4] it
has already been shown that bounding |S| does not lead to
easier solvable instances. Unfortunately, as shown below by
Theorem 6.(a), enlarging the class of input graphs leading
to polynomial time solvable classes of MCP, looks hopeless,
even if strong conditions are imposed on c. Actually, in view
of Theorem 6.(b), the main source of difficulty in solving
MCP lies in the costs structure: requiring c to be metric makes
the problem easy to solve through a simple O(np) greedy
algorithm. So both MCP on trees and MCP with metric costs
barely lie within the boundary separating, so as to speak, easy
instances from hard ones. This is confirmed by Theorem 6.(c)

where, even when G is a tree and c is metric, requiring some
further conditions makes the problem NP-complete.

In order to proceed with the section we need some defini-
tions. Let w : E → Z+ be a weighting of the edges of a graph
G and, for u, v ∈ V denote by dw(u, v) the length of a shortest
path from u to v with respect to w and by d(u, v) the geometric
distance between u and v (the minimum number of edges of
a path from u to v). The service cost function c is monotone,
if d(u, s) < d(v, s) ⇒ cus ≤ cvs. The service cost function is
said to be metric, if c is proportional to dw for some w. Lower
and upper capacity functions b1, b2 : S → Z, with b1 ≤ b2

are also given. A capacitated centered partition (with respect
to b1 and b2) is a centered partition π = {C1 . . . , Cp} such
that for all t = 1, . . . , p

b1(t) ≤
∑
v∈Ct

cvt ≤ b2(t), where t is the center in Ct .

The following theorem summarizes the above mentioned
results on the complexity of the problem.

Theorem 6. Let G be a connected graph, S a set of p centers
and c a cost function. Then,

(a) Problem MCP is NP-complete even if c is monotone and
the input graph is bipartite.

(b) Problem MCP can be solved in strongly polynomial time
if the input graph is arbitrary and c is metric (compare
with our main result for trees).

(c) It is NP-complete to decide if a 2-spider admits a feasible
capacitated partition. Therefore, the capacitated version
of MCP is NP-hard even for trees and even for metric
assignment functions.

Proof. (a). Reduction from SAT. Let C1, . . . , Cm be m
clauses over the set of variables {u1, . . . , un}. Construct a
bipartite graph as follows. For each clause Ci, i = 1, . . . , m
there is a vertex vi. For each variable uj, j = 1, . . . , n there
is a vertex zj. There is an edge joining vi to zj if and only
if clause Ci contains variable uj. The graph built so far
is just the bipartite graph representing clause-variable inci-
dence. For each vertex zj take two more vertices sj and tj
and connect them to zj; sj represents literal uj while tj repre-
sents literal uj. The resulting graph B is bipartite with shores
{v1, . . . , vm} ∪ {s1, t1} . . . ∪ {sn, tn} and {z1, . . . , zm}. More-
over, we can suppose that such graph is connected (since the
set of SAT instances whose corresponding bipartite graph
is connected forms an NP-complete subclass of SAT). Let
S = {s1, t1} ∪ . . . ∪ {sn, tn} and U = V(B) \ S. Define the
assignment costs as follows:

• if variable uj occurs in clause Ci as uj set cvisj = 0;
• if variable uj occurs in clause Ci as uj set cvitj = 0;
• set czjsj = czj tj = 0, for j = 1, . . . , n;
• set the assignment costs equal to 1 otherwise.

The function c is 0,1-valued. Moreover, by construction,
for s ∈ S and i ∈ U, cis = 0 ⇒ d(i, s) ≤ 2 and cis = 1 ⇒

10 NETWORKS—2008—DOI 10.1002/net

d(i, s) ≥ 2. Hence for s ∈ S and distinct i, j ∈ U, cjs > cis

implies d(j, s) ≥ d(i, s). It follows that c is monotone.
Next, we claim that there is a centered partition of cost zero

if and only if the formula is satisfiable. First of all, observe
that

(25) the cost of assigning vi to q ∈ {sj, tj} is zero if and
only if variable uj occurs in clause Ci either (case 1) as
unnegated if q = sj or (case 2) as negated if q = tj.
Moreover, in both cases, zj and vi are adjacent in B and
zj lies on a path from vi to q.

By (25) it follows that any truth assignment that sets uj = 1
in the former case and uj = 0 in the latter one, satisfies clause
Ci. Therefore, any centered partition of cost zero defines a
truth assignment satisfying all clauses. Conversely, suppose
that there is a truth assignment satisfying all clauses. Assign
zj to sj if variable uj is set to 1 by the truth assignment. Assign
zj to tj otherwise. Let qj ∈ {sj, tj} denote the center which zj

is assigned to. For i = 1, . . . , m, clause Ci contains a literal xi

set to 1 by the truth assignment. Let xi belong to {ūj(i), uj(i)}
where the index j(i) is as small as possible. Assign vi to
qj(i). By (25) such an assignment has cost zero. Moreover,
vi and zj(i), which are adjacent in B, are both assigned to
the same center qj(i). Therefore – up to trivial components –
{{qj, zj} ∪ Vj, j = 1, . . . , n}, where Vj ≡ {vi : j(i) = j}, is a
centered partition of B of cost zero.

(b). As in Section 2, assume that unit i is served by center
s(i). Thus∑

i∈U

cis(i) −
∑
i∈U

min
t∈S

cit =
∑
i∈U

(
cis(i) − min

t∈S
cit

) ≥ 0. (26)

Let σ denote the mapping that assigns to i ∈ U the point s
of S that minimizes cit over S. Ties are broken supposing that S
is arbitrarily linearly ordered and by giving priority to smaller
centers. If c is metric the set Cs = {i ∈ U : σ(i) = s} is
connected in G for each s ∈ S. Indeed, if h ∈ Cs, s is the point
of S closest to h; if i lies on a shortest path from h to s (shortest
w.r.t. to the metric c), then s is also the point of S closest
to i. Therefore, i ∈ Cs, and {s} ∪ Cs induces a connected
component of G. By (26), it follows that {{s}∪ Cs, s ∈ S} is a
centered partition of minimum cost. One obtains a centered
partition such that if v ∈ U is assigned to s ∈ S then all units
along a shortest path from v to s are assigned to s as well by
the following simple O(np) greedy algorithm. Start with no
unit being assigned. Let v ∈ U be a unit not assigned yet and
let s ∈ S minimize cvt over S (ties are broken with the same
rule used above). Assign to s all units along a shortest path
form v to s. Repeat until all units have been assigned.

(c). Reduction from SUBSET SUM [7]. Let a1 . . . ap be
an instance of SUBSET SUM. Let M = ∑p

i=1 ai. Let G
be a star with p + 1 leaves v0, v1, . . . , vp and let q denote
the unique non-leaf node in G. Set S = {v0, v1 . . . , vp} and
define b1, b2 : S → Z as follows: b1(v0) = b2(v0) = M/2
and b1(vi) = 0, b2(vi) = 1, for i = 1, . . . , p. Insert a new
vertex ui on each edge qvi, i = 1 . . . p. Define edge weights

as follows: edges v0q and uivi, i = 1 . . . p, have weight zero;
edges qui, i = 1 . . . p have weight ai. Denote by w this weight
function and let cvt = dw(v, t) be the length of a shortest path
between v and t, v �∈ S, t ∈ S. Then every feasible capacitated
centered partition defines a partition of {1, . . . , p} into sets A
and B such that

∑
i∈A ai = ∑

i∈B ai and conversely. ■

Acknowledgments

We are indebted to both referees for their valuable
suggestions.

REFERENCES

[1] N. Apollonio, I. Lari, J. Puerto, F. Ricca, and B. Simeone,
“Partitioning a tree into single-center subtrees to mini-
mize flat service costs”, Technical Report, Universidad de
Sevilla Dep. to de Estadistíca e Investigación Operativa, (in
preparation).

[2] Y. Bartal, On approximating arbitrary metrics by tree metrics,
Proc of the 30th Ann Symp Foundation Comput Sci (1998),
161–168.

[3] M. Charikar, C. Chekuri, A. Goel, and S. Guha, Rounding
via trees: Deterministic approximation algorithms for group
Steiner trees and k-median, Proc 30th Ann Symp Foundation
Comput Sci (1998), 114–123.

[4] R. Cordone, A short note on graph tree partition prob-
lems with assignment or communication objective functions,
Internal Report DEI 2001.7, Politecnico di Milano, 2001.

[5] G. Cornuéjols, Combinatorial Optimization. Packing and
Covering, SIAM, CBMS-NSF, Philadelphia, 2001.

[6] A. Frangioni, Generalized bundle methods, SIAM J Opt 13
(2002), 117–156.

[7] M.R. Garey and D.S. Johnson, Computers and intractability,
W. H. Freeman, New York, 1999.

[8] R.S. Garfinkel and G.L. Nemhauser, Optimal political dis-
tricting by implicit enumeration techniques, Manag Sci 16
(1970), 495–508.

[9] J.-L. Goffin and J.-P. Vial, Convex nondifferentiable opti-
mization: a survey focussed on the analytic center cutting
plane method, Opt Methods Software 17 (2002), 805–867.

[10] Grilli di Cortona, C. Manzi, A. Pennisi, F. Ricca, and B.
Simeone, Evaluation and optimization of electoral systems,
SIAM Monographs on Discrete Mathematics and Applica-
tions, SIAM, Society for Industrial and Aplied Mathematics,
Philadelphia, 1999.

[11] P.L. Hammer and B. Simeone, Order relations of variables in
0-1 programming, Surveys in combinatorial optimization, S.
Martello, G. Laporte, M. Minoux, and C.C. Ribeiro (Editors),
Vol. 31, Annals of Discrete Mathematics, 1987, pp. 83–112.

[12] J.B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and
minimization algorithms, Springer, Berlin, 1996.

[13] O. Kariv and S.L. Hakimi, An algorithmic approach to net-
work location problems I: The p-centers, SIAM J Appl Math
37 (1979), 513–538.

NETWORKS—2008—DOI 10.1002/net 11

[14] O. Kariv and S.L. Hakimi, An algorithmic approach to net-
work location problems II: The p-medians, SIAM J Appl
Math 37 (1979), 539–560.

[15] M. Maravalle and B. Simeone, A spanning tree heuristic
for regional clustering, Commun Stat Theory Methods 24
(1995), 623–639.

[16] B. Simeone, Optimal graph partitioning, Atti Giornate di
Lavoro AIRO, Urbino 1978, AIRO (Italian Association for
Operations Research), Urbino, 1978, pp. 57–73.

[17] B.C. Tansel, R.L. Francis, and T.J. Lowe, Duality: Covering
and constraining p-center problems on trees, Discrete loca-
tion theory, P. Mirchandani and R.L. Francis (Editors), Wiley,
New York, 1990, pp. 349–386.

[18] E. Tardos, A strongly polynomial algorithm to solve combi-
natorial linear programs, Oper Res 34 (1986), 250–256.

[19] P.M. Vaidya, A new algorithm for minimizing con-
vex functions over convex sets, Math Progr 73 (1996),
291–341.

12 NETWORKS—2008—DOI 10.1002/net

