1,921 research outputs found
Optimising Spectroscopic and Photometric Galaxy Surveys: Efficient Target Selection and Survey Strategy
The next generation of spectroscopic surveys will have a wealth of
photometric data available for use in target selection. Selecting the best
targets is likely to be one of the most important hurdles in making these
spectroscopic campaigns as successful as possible. Our ability to measure dark
energy depends strongly on the types of targets that we are able to select with
a given photometric data set. We show in this paper that we will be able to
successfully select the targets needed for the next generation of spectroscopic
surveys. We also investigate the details of this selection, including
optimisation of instrument design and survey strategy in order to measure dark
energy. We use color-color selection as well as neural networks to select the
best possible emission line galaxies and luminous red galaxies for a
cosmological survey. Using the Fisher matrix formalism we forecast the
efficiency of each target selection scenario. We show how the dark energy
figures of merit change in each target selection regime as a function of target
type, survey time, survey density and other survey parameters. We outline the
optimal target selection scenarios and survey strategy choices which will be
available to the next generation of spectroscopic surveys.Comment: 16 pages, 22 figures, accepted to MNRAS in dec 201
The Dust Content of Galaxy Clusters
We report on the detection of reddening toward z ~ 0.2 galaxy clusters. This
is measured by correlating the Sloan Digital Sky Survey cluster and quasar
catalogs and by comparing the photometric and spectroscopic properties of
quasars behind the clusters to those in the field. We find mean E(B-V) values
of a few times 10^-3 mag for sight lines passing ~Mpc from the clusters'
center. The reddening curve is typical of dust but cannot be used to
distinguish between different dust types. The radial dependence of the
extinction is shallow near the cluster center suggesting that most of the
detected dust lies at the outskirts of the clusters. Gravitational
magnification of background z ~ 1.7 sources seen on Mpc (projected) scales
around the clusters is found to be of order a few per cent, in qualitative
agreement with theoretical predictions. Contamination by different spectral
properties of the lensed quasar population is unlikely but cannot be excluded.Comment: 4 pages, 3 figure
The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for maxBCG Galaxy Clusters
The distribution of galaxies in position and velocity around the centers of
galaxy clusters encodes important information about cluster mass and structure.
Using the maxBCG galaxy cluster catalog identified from imaging data obtained
in the Sloan Digital Sky Survey, we study the BCG-galaxy velocity correlation
function. By modeling its non-Gaussianity, we measure the mean and scatter in
velocity dispersion at fixed richness. The mean velocity dispersion increases
from 202+/-10 km/s for small groups to more than 854+/-102 km/s for large
clusters. We show the scatter to be at most 40.5+/-3.5%, declining to
14.9+/-9.4% in the richest bins. We test our methods in the C4 cluster catalog,
a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2
spectroscopic sample, and in mock galaxy catalogs constructed from N-body
simulations. Our methods are robust, measuring the scatter to well within
one-sigma of the true value, and the mean to within 10%, in the mock catalogs.
By convolving the scatter in velocity dispersion at fixed richness with the
observed richness space density function, we measure the velocity dispersion
function of the maxBCG galaxy clusters. Although velocity dispersion and
richness do not form a true mass-observable relation, the relationship between
velocity dispersion and mass is theoretically well characterized and has low
scatter. Thus our results provide a key link between theory and observations up
to the velocity bias between dark matter and galaxies.Comment: 25 pages, 15 figures, 2 tables, published in Ap
A Systematic Search for High Surface Brightness Giant Arcs in a Sloan Digital Sky Survey Cluster Sample
We present the results of a search for gravitationally-lensed giant arcs
conducted on a sample of 825 SDSS galaxy clusters. Both a visual inspection of
the images and an automated search were performed and no arcs were found. This
result is used to set an upper limit on the arc probability per cluster. We
present selection functions for our survey, in the form of arc detection
efficiency curves plotted as functions of arc parameters, both for the visual
inspection and the automated search. The selection function is such that we are
sensitive only to long, high surface brightness arcs with g-band surface
brightness mu_g 10. Our upper limits on
the arc probability are compatible with previous arc searches. Lastly, we
report on a serendipitous discovery of a giant arc in the SDSS data, known
inside the SDSS Collaboration as Hall's arc.Comment: 34 pages,8 Fig. Accepted ApJ:Jan-200
Weak-lensing calibration of a stellar mass-based mass proxy for redMaPPer and Voronoi Tessellation clusters in SDSS Stripe 82
We present the first weak lensing calibration of , a new galaxy
cluster mass proxy corresponding to the total stellar mass of red and blue
members, in two cluster samples selected from the SDSS Stripe 82 data: 230
redMaPPer clusters at redshift and 136 Voronoi Tessellation
(VT) clusters at . We use the CS82 shear catalog and stack
the clusters in bins to measure a mass-observable power law
relation. For redMaPPer clusters we obtain , . For VT clusters, we find
, and , for a low and a high redshift bin, respectively. Our results are
consistent, internally and with the literature, indicating that our method can
be applied to any cluster finding algorithm. In particular, we recommend that
be used as the mass proxy for VT clusters. Catalogs including
measurements will enable its use in studies of galaxy evolution
in clusters and cluster cosmology.Comment: Updated to be consistent with the published versio
Identification of A-colored Stars and Structure in the Halo of the Milky Way from SDSS Commissioning Data
A sample of 4208 objects with magnitude 15 < g* < 22 and colors of main
sequence A stars has been selected from 370 square degrees of Sloan Digital Sky
Survey (SDSS) commissioning observations. The data is from two long, narrow
stripes, each with an opening angle of greater than 60 deg, at Galactic
latitudes 36 < abs(b) < 63 on the celestial equator. An examination of the
sample's distribution shows that these stars trace considerable substructure in
the halo. Large overdensities of A-colored stars in the North at (l,b,R) =
(350, 50, 46 kpc) and in the South at (157, -58, 33 kpc) and extending over
tens of degrees are present in the halo of the Milky Way. Using photometry to
separate the stars by surface gravity, both structures are shown to contain a
sequence of low surface gravity stars consistent with identification as a blue
horizontal branch (BHB). Both structures also contain a population of high
surface gravity stars two magnitudes fainter than the BHB stars, consistent
with their identification as blue stragglers (BSs). From the numbers of
detected BHB stars, lower limits to the implied mass of the structures are
6x10^6 M_sun and 2x10^6 M_sun. The fact that two such large clumps have been
detected in a survey of only 1% of the sky indicates that such structures are
not uncommon in the halo. Simple spheroidal parameters are fit to a complete
sample of the remaining unclumped BHB stars and yield (at r < 40 kpc) a fit to
a halo distribution with flattening (c/a = 0.65+/-0.2) and a density falloff
exponent of alpha = -3.2+/-0.3.Comment: AASTeX v5_0, 26 pages, 1 table, 20 figures, ApJ accepte
A High-resolution Scintillating Fiber Tracker With Silicon Photomultiplier Array Readout
We present prototype modules for a tracking detector consisting of multiple
layers of 0.25 mm diameter scintillating fibers that are read out by linear
arrays of silicon photomultipliers. The module production process is described
and measurements of the key properties for both the fibers and the readout
devices are shown. Five modules have been subjected to a 12 GeV/c proton/pion
testbeam at CERN. A spatial resolution of 0.05 mm and light yields exceeding 20
detected photons per minimum ionizing particle have been achieved, at a
tracking efficiency of more than 98.5%. Possible techniques for further
improvement of the spatial resolution are discussed.Comment: 31 pages, 27 figures, pre-print version of an article published in
Nuclear Instruments and Methods in Physics Research Section A, Vol. 62
- …
