1,913 research outputs found
The Cauchy problems for Einstein metrics and parallel spinors
We show that in the analytic category, given a Riemannian metric on a
hypersurface and a symmetric tensor on , the metric
can be locally extended to a Riemannian Einstein metric on with second
fundamental form , provided that and satisfy the constraints on
imposed by the contracted Codazzi equations. We use this fact to study the
Cauchy problem for metrics with parallel spinors in the real analytic category
and give an affirmative answer to a question raised in B\"ar, Gauduchon,
Moroianu (2005). We also answer negatively the corresponding questions in the
smooth category.Comment: 28 pages; final versio
Generic metrics and the mass endomorphism on spin three-manifolds
Let be a closed Riemannian spin manifold. The constant term in the
expansion of the Green function for the Dirac operator at a fixed point is called the mass endomorphism in associated to the metric due to
an analogy to the mass in the Yamabe problem. We show that the mass
endomorphism of a generic metric on a three-dimensional spin manifold is
nonzero. This implies a strict inequality which can be used to avoid
bubbling-off phenomena in conformal spin geometry.Comment: 8 page
The Dirac operator on generalized Taub-NUT spaces
We find sufficient conditions for the absence of harmonic spinors on
spin manifolds constructed as cone bundles over a compact K\"ahler base. These
conditions are fulfilled for certain perturbations of the Euclidean metric, and
also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a
conjecture of Vi\csinescu and the second author.Comment: Final version, 16 page
On a spin conformal invariant on manifolds with boundary
On a n-dimensional connected compact manifold with non-empty boundary
equipped with a Riemannian metric, a spin structure and a chirality operator,
we study some properties of a spin conformal invariant defined from the first
eigenvalue of the Dirac operator under the chiral bag boundary condition. More
precisely, we show that we can derive a spinorial analogue of Aubin's
inequality.Comment: 26 page
Regularity for eigenfunctions of Schr\"odinger operators
We prove a regularity result in weighted Sobolev spaces (or
Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator.
More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space
obtained by blowing up the set of singular points of the Coulomb type potential
V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N}
\frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u
in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution
sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0.
Our result extends to the case when b_j and c_{ij} are suitable bounded
functions on the blown-up space. In the single-electron, multi-nuclei case, we
obtain the same result for all a<3/2.Comment: to appear in Lett. Math. Phy
Em2-ELISA for the follow-up of alveolar echinococcosis after complete surgical resection of liver lesions
Alveolar echinococcosis, a serious and often fatal human disease, can be efficiently cured only by complete surgical resection of the Echinococcus multilocularis lesion. The present study showed that the determination in patients who had undergone surgery of antibody activity directed against the antigen Em2 reliably reflected complete or incomplete surgical resection. From 9 patients with pre-operative positive results in the Em2 enzyme-linked immunosorbent assay (Em2-ELISA) and successful surgical resection, 6 converted to negative within one year and the remaining 3 patients within 4 years after surgery. Six of 7 additional patients who showed recurrences in an average of 6 years after surgery despite assumed complete surgical resection, were positive by Em2-ELISA at the time of recurrence. Discrimination was not possible between these 2 groups of patients when using an ELISA employing crude antigen obtained from E. granulosus hydatid cyst flui
Invertible Dirac operators and handle attachments on manifolds with boundary
For spin manifolds with boundary we consider Riemannian metrics which are
product near the boundary and are such that the corresponding Dirac operator is
invertible when half-infinite cylinders are attached at the boundary. The main
result of this paper is that these properties of a metric can be preserved when
the metric is extended over a handle of codimension at least two attached at
the boundary. Applications of this result include the construction of
non-isotopic metrics with invertible Dirac operator, and a concordance
existence and classification theorem.Comment: Accepted for publication in Journal of Topology and Analysi
Experimental evidence for the role of cantori as barriers in a quantum system
We investigate the effect of cantori on momentum diffusion in a quantum
system. Ultracold caesium atoms are subjected to a specifically designed
periodically pulsed standing wave. A cantorus separates two chaotic regions of
the classical phase space. Diffusion through the cantorus is classically
predicted. Quantum diffusion is only significant when the classical phase-space
area escaping through the cantorus per period greatly exceeds Planck's
constant. Experimental data and a quantum analysis confirm that the cantori act
as barriers.Comment: 19 pages including 9 figures, Accepted for publication in Physical
Review E in March 199
The Ammann-Beenker tilings revisited
This paper introduces two tiles whose tilings form a one-parameter family of
tilings which can all be seen as digitization of two-dimensional planes in the
four-dimensional Euclidean space. This family contains the Ammann-Beenker
tilings as the solution of a simple optimization problem.Comment: 7 pages, 4 figure
Manifolds with small Dirac eigenvalues are nilmanifolds
Consider the class of n-dimensional Riemannian spin manifolds with bounded
sectional curvatures and diameter, and almost non-negative scalar curvature.
Let r=1 if n=2,3 and r=2^{[n/2]-1}+1 if n\geq 4. We show that if the square of
the Dirac operator on such a manifold has small eigenvalues, then the
manifold is diffeomorphic to a nilmanifold and has trivial spin structure.
Equivalently, if M is not a nilmanifold or if M is a nilmanifold with a
non-trivial spin structure, then there exists a uniform lower bound on the r-th
eigenvalue of the square of the Dirac operator. If a manifold with almost
nonnegative scalar curvature has one small Dirac eigenvalue, and if the volume
is not too small, then we show that the metric is close to a Ricci-flat metric
on M with a parallel spinor. In dimension 4 this implies that M is either a
torus or a K3-surface
- …
