172 research outputs found

    QCD Propagators at non-vanishing temperatures

    Full text link
    We investigate the behaviour of the gluon and ghost propagators, especially their infrared properties, at non-vanishing temperatures. To this end we solve their Dyson-Schwinger equations on a torus and find an infrared enhanced ghost propagator and an infrared vanishing gluon propagator.Comment: 2 pages, 2 figures; talk given by B.G. at the Erice summer school on Nuclear Physics, Sept. 16 -- 24, 2003, Erice, Ital

    Temperature Dependence of Gluon and Ghost Propagators in Landau-Gauge Yang-Mills Theory below the Phase Transition

    Full text link
    The Dyson-Schwinger equations of Landau-gauge Yang-Mills theory for the gluon and ghost propagators are investigated. Numerical results are obtained within a truncation scheme which has proven to be successful at vanishing temperature. For temperatures up to 250 MeV we find only minor quantitative changes in the infrared behaviour of the gluon and ghost propagators. The effective action calculated from these propagators is temperature-independent within the numerical uncertainty.Comment: 9 pages, 14 figures, submitted to EPJ C, typos corrected, reference and 2 minor clarifications added, in v3: one paragraph extended, some references added, version to appear in EPJ

    Center phase transition from matter propagators in (scalar) QCD

    Full text link
    Novel order parameters for the confinement-deconfinement phase transition of quenched QCD and fundamentally charged scalar QCD are presented. Similar to the well-known dual condensate, they are defined via generalized matter propagators with U(1)U(1)-valued boundary conditions. The order parameters are easily accessible with functional methods. Their validity and accessibility is explicitly demonstrated by numerical studies of the Dyson-Schwinger equations for the matter propagators. Even in the case of heavy scalar matter, where the propagator does not show a signature of the phase transition, a discontinuity due to the transition can be extracted in the order parameters, establishing also fundamentally charged scalar matter as a probe for color confinement.Comment: accepted versio

    High-Temperature Limit of Landau-Gauge Yang-Mills Theory

    Full text link
    The infrared properties of the high-temperature limit of Landau-gauge Yang-Mills theory are investigated. In a first step the high-temperature limit of the Dyson-Schwinger equations is taken. The resulting equations are identical to the Dyson-Schwinger equations of the dimensionally reduced theory, a three-dimensional Yang-Mills theory coupled to an effective adjoint Higgs field. These equations are solved analytically in the infrared and ultraviolet, and numerically for all Euclidean momenta. We find infrared enhancement for the Faddeev-Popov ghosts, infrared suppression for transverse gluons and a mass for the Higgs. These results imply long-range interactions and over-screening in the chromomagnetic sector of high temperature Yang-Mills theory while in the chromoelectric sector only screening is observed.Comment: 21 pages, 23 figures, 3 tables, submitted to EPJ

    A study of the influence of the gauge group on the Dyson-Schwinger equations for scalar-Yang-Mills systems

    Full text link
    The particular choice of the gauge group for Yang-Mills theory plays an important role when it comes to the influence of matter fields. In particular, both the chosen gauge group and the representation of the matter fields yield structural differences in the quenched case. Especially, the qualitative behavior of the Wilson potential is strongly dependent on this selection. Though the algebraic reasons for this observation is clear, it is far from obvious how this behavior can be described besides using numerical simulations. Herein, it is investigated how the group structure appears in the Dyson-Schwinger equations, which as a hierarchy of equations for the correlation functions have to be satisfied. It is found that there are differences depending on both the gauge group and the representation of the matter fields. This provides insight into possible truncation schemes for practical calculations using these equations.Comment: 47 page

    Propagators in Coulomb gauge from SU(2) lattice gauge theory

    Full text link
    A thorough study of 4-dimensional SU(2) Yang-Mills theory in Coulomb gauge is performed using large scale lattice simulations. The (equal-time) transverse gluon propagator, the ghost form factor d(p) and the Coulomb potential V_{coul} (p) ~ d^2(p) f(p)/p^2 are calculated. For large momenta p, the gluon propagator decreases like 1/p^{1+\eta} with \eta =0.5(1). At low momentum, the propagator is weakly momentum dependent. The small momentum behavior of the Coulomb potential is consistent with linear confinement. We find that the inequality \sigma_{coul} \ge \sigma comes close to be saturated. Finally, we provide evidence that the ghost form factor d(p) and f(p) acquire IR singularities, i.e., d(p) \propto 1/\sqrt{p} and f(p) \propto 1/p, respectively. It turns out that the combination g_0^2 d_0(p) of the bare gauge coupling g_0 and the bare ghost form factor d_0(p) is finite and therefore renormalization group invariant.Comment: 10 pages, 7 figure

    Nonperturbative QCD Coupling and its β\beta function from Light-Front Holography

    Full text link
    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a nonperturbative effective coupling αsAdS(Q2)\alpha_s^{AdS}(Q^2). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale 1 \sim 1 GeV. The resulting β\beta function appears to capture the essential characteristics of the full β\beta function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on αsAdS(Q2)\alpha_s^{AdS}(Q^2).Comment: 32 pages, 7 figures. Final version published in Phys. Rev.

    Dynamical Chiral Symmetry Breaking in Unquenched QED3{QED}_3

    Full text link
    We investigate dynamical chiral symmetry breaking in unquenched QED3{QED}_3 using the coupled set of Dyson--Schwinger equations for the fermion and photon propagators. For the fermion-photon interaction we employ an ansatz which satisfies its Ward--Green--Takahashi identity. We present self-consistent analytical solutions in the infrared as well as numerical results for all momenta. In Landau gauge, we find a phase transition at a critical number of flavours of Nfcrit4N_f^{\mathrm crit} \approx 4. In the chirally symmetric phase the infrared behaviour of the propagators is described by power laws with interrelated exponents. For Nf=1N_f=1 and Nf=2N_f=2 we find small values for the chiral condensate in accordance with bounds from recent lattice calculations. We investigate the Dyson--Schwinger equations in other linear covariant gauges as well. A comparison of their solutions to the accordingly transformed Landau gauge solutions shows that the quenched solutions are approximately gauge covariant, but reveals a significant amount of violation of gauge covariance for the unquenched solutions.Comment: 33 pages, 8 figures, reference added, version to be published in Phys. Rev.

    Two- and three-point functions in two-dimensional Landau-gauge Yang-Mills theory: Continuum results

    Full text link
    We investigate the Dyson-Schwinger equations for the gluon and ghost propagators and the ghost-gluon vertex of Landau-gauge gluodynamics in two dimensions. While this simplifies some aspects of the calculations as compared to three and four dimensions, new complications arise due to a mixing of different momentum regimes. As a result, the solutions for the propagators are more sensitive to changes in the three-point functions and the ansaetze used for them at the leading order in a vertex a expansion. Here, we therefore go beyond this common truncation by including the ghost-gluon vertex self-consistently for the first time, while using a model for the three-gluon vertex which reproduces the known infrared asymptotics and the zeros at intermediate momenta as observed on the lattice. A separate computation of the three-gluon vertex from the results is used to confirm the stability of this behavior a posteriori. We also present further arguments for the absence of the decoupling solution in two dimensions. Finally, we show how in general the infrared exponent kappa of the scaling solutions in two, three and four dimensions can be changed by allowing an angle dependence and thus an essential singularity of the ghost-gluon vertex in the infrared.Comment: 24 pages; added references, improved choices of parameters for vertex models; identical to version published in JHE

    Schwinger functions and light-quark bound states

    Full text link
    We examine the applicability and viability of methods to obtain knowledge about bound-states from information provided solely in Euclidean space. Rudimentary methods can be adequate if one only requires information about the ground and first excited state and assumptions made about analytic properties are valid. However, to obtain information from Schwinger functions about higher mass states, something more sophisticated is necessary. A method based on the correlator matrix can be dependable when operators are carefully tuned and errors are small. This method is nevertheless not competitive when an unambiguous analytic continuation of even a single Schwinger function to complex momenta is available.Comment: 27 pages, 14 figure
    corecore