research

Dynamical Chiral Symmetry Breaking in Unquenched QED3{QED}_3

Abstract

We investigate dynamical chiral symmetry breaking in unquenched QED3{QED}_3 using the coupled set of Dyson--Schwinger equations for the fermion and photon propagators. For the fermion-photon interaction we employ an ansatz which satisfies its Ward--Green--Takahashi identity. We present self-consistent analytical solutions in the infrared as well as numerical results for all momenta. In Landau gauge, we find a phase transition at a critical number of flavours of Nfcrit4N_f^{\mathrm crit} \approx 4. In the chirally symmetric phase the infrared behaviour of the propagators is described by power laws with interrelated exponents. For Nf=1N_f=1 and Nf=2N_f=2 we find small values for the chiral condensate in accordance with bounds from recent lattice calculations. We investigate the Dyson--Schwinger equations in other linear covariant gauges as well. A comparison of their solutions to the accordingly transformed Landau gauge solutions shows that the quenched solutions are approximately gauge covariant, but reveals a significant amount of violation of gauge covariance for the unquenched solutions.Comment: 33 pages, 8 figures, reference added, version to be published in Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020