41 research outputs found

    Particulate Air Pollution, Clock Gene Methylation, and Stroke : Effects on Stroke Severity and Disability

    Get PDF
    Circadian rhythm disturbances have been consistently associated with the development of several diseases, particularly cardiovascular diseases (CVDs). A central clock in the brain maintains the daily rhythm in accordance with the external environment. At the molecular level, the clock is maintained by \u201cclock genes\u201d, the regulation of which is mainly due to DNA methylation, a molecular mechanism of gene expression regulation, able to react to and be reprogrammed by environmental exposure such as exposure to particulate matter (PM). In 55 patients with a diagnosis of acute ischemic stroke, we showed that PM2.5 exposure experienced before the event influenced clock genes methylation (i.e., circadian locomotor output cycles protein kaput CLOCK, period 2 PER2, cryprochrome 1 CRY1, Neuronal PAS Domain Protein 2 NPAS2), possibly modulating the patient prognosis after the event, as cryptochrome 1 CRY1 and period 1 PER1 methylation levels were associated with the Rankin score. Moreover, if PM2.5 annual average was low, CRY1/CRY2 methylation levels were positively associated with the National Institutes of Health Stroke Scale (NIHSS) score, whereas they were negatively associated if PM2.5 exposure was high. Whether epigenetic changes in clock genes need to be considered as a prognostic marker of stroke or rather a causal agent in stroke development remains to be determined. Further studies are needed to determine the role of clock gene methylation in regulating the response to and recovery after a stroke event

    Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers

    Get PDF
    BACKGROUND: Telomere shortening in blood leukocytes has been associated with increased morbidity and death from cardiovascular disease and cancer, but determinants of shortened telomeres, a molecular feature of biological aging, are still largely unidentified. Traffic pollution has been linked with both cardiovascular and cancer risks, particularly in older subjects. Whether exposure to traffic pollution is associated with telomere shortening has never been evaluated. METHODS: We measured leukocyte telomere length (LTL) by real-time PCR in blood DNA from 77 traffic officers exposed to high levels of traffic pollutants and 57 office workers (referents). Airborne benzene and toluene, as tracers for traffic exposure, were measured using personal passive samplers and gas-chromatography/flame-ionization detector analysis. We used covariate-adjusted multivariable models to test the effects of the exposure on LTL and obtain adjusted LTL means and 95\% Confidence Intervals (CIs). RESULTS: Adjusted mean LTL was 1.10 (95\%CI 1.04-1.16) in traffic officers and 1.27 in referents (95\%CI 1.20-1.35) [p < 0.001]. LTL decreased in association with age in both traffic officers (p = 0.01) and referents (p = 0.001), but traffic officers had shorter LTL within each age category. Among traffic officers, adjusted mean relative LTL was shorter in individuals working in high (n = 45, LTL = 1.02, 95\%CI 0.96-1.09) compared to low traffic intensity (n = 32, LTL = 1.22, 95\%CI 1.13-1.31) [p < 0.001]. In the entire study population, LTL decreased with increasing levels of personal exposure to benzene (p = 0.004) and toluene (p = 0.008). CONCLUSION: Our results indicate that leukocyte telomere length is shortened in subjects exposed to traffic pollution, suggesting evidence of early biological aging and disease risk

    Urinary Benzene Biomarkers and DNA Methylation in Bulgarian Petrochemical Workers: Study Findings and Comparison of Linear and Beta Regression Models

    Get PDF
    Chronic occupational exposure to benzene is associated with an increased risk of hematological malignancies such as acute myeloid leukemia (AML), but the underlying mechanisms are still unclear. The main objective of this study was to investigate the association between benzene exposure and DNA methylation, both in repeated elements and candidate genes, in a population of 158 Bulgarian petrochemical workers and 50 unexposed office workers. Exposure assessment included personal monitoring of airborne benzene at work and urinary biomarkers of benzene metabolism (S-phenylmercapturic acid [SPMA] and trans,trans-muconic acid [t,t-MA]) at the end of the work-shift. The median levels of airborne benzene, SPMA and t,t-MA in workers were 0.46 ppm, 15.5 µg/L and 711 µg/L respectively, and exposure levels were significantly lower in the controls. Repeated-element DNA methylation was measured in Alu and LINE-1, and gene-specific methylation in MAGE and p15. DNA methylation levels were not significantly different between exposed workers and controls (P>0.05). Both ordinary least squares (OLS) and beta-regression models were used to estimate benzene-methylation associations. Beta-regression showed better model specification, as reflected in improved coefficient of determination (pseudo R2R^2) and Akaike’s information criterion (AIC). In beta-regression, we found statistically significant reductions in LINE-1 (−0.15%, P<0.01) and p15 (−0.096%, P<0.01) mean methylation levels with each interquartile range (IQR) increase in SPMA. This study showed statistically significant but weak associations of LINE-1 and p15 hypomethylation with SPMA in Bulgarian petrochemical workers. We showed that beta-regression is more appropriate than OLS regression for fitting methylation data

    Association between leukocyte telomere shortening and exposure to traffic pollution : a cross-sectional study on traffic officers and indoor office workers

    Get PDF
    BACKGROUND: Telomere shortening in blood leukocytes has been associated with increased morbidity and death from cardiovascular disease and cancer, but determinants of shortened telomeres, a molecular feature of biological aging, are still largely unidentified. Traffic pollution has been linked with both cardiovascular and cancer risks, particularly in older subjects. Whether exposure to traffic pollution is associated with telomere shortening has never been evaluated. METHODS: We measured leukocyte telomere length (LTL) by real-time PCR in blood DNA from 77 traffic officers exposed to high levels of traffic pollutants and 57 office workers (referents). Airborne benzene and toluene, as tracers for traffic exposure, were measured using personal passive samplers and gas-chromatography/flame-ionization detector analysis. We used covariate-adjusted multivariable models to test the effects of the exposure on LTL and obtain adjusted LTL means and 95% Confidence Intervals (CIs). RESULTS: Adjusted mean LTL was 1.10 (95%CI 1.04-1.16) in traffic officers and 1.27 in referents (95%CI 1.20-1.35) [p < 0.001]. LTL decreased in association with age in both traffic officers (p = 0.01) and referents (p = 0.001), but traffic officers had shorter LTL within each age category. Among traffic officers, adjusted mean relative LTL was shorter in individuals working in high (n = 45, LTL = 1.02, 95%CI 0.96-1.09) compared to low traffic intensity (n = 32, LTL = 1.22, 95%CI 1.13-1.31) [p < 0.001]. In the entire study population, LTL decreased with increasing levels of personal exposure to benzene (p = 0.004) and toluene (p = 0.008). CONCLUSION: Our results indicate that leukocyte telomere length is shortened in subjects exposed to traffic pollution, suggesting evidence of early biological aging and disease risk

    Urinary chromium is associated with changes in leukocyte miRNA expression in obese subjects

    Get PDF
    Background/Objectives:Epidemiological studies suggest a link between chromium (Cr) status and cardiovascular disease. Increased urinary excretion of Cr was reported in subjects with diabetes compared with non-diabetic controls and those with non-diabetic insulin resistance. Epigenetic alterations have been linked to the presence of Cr, and microRNA (miRNA) expression has been implicated in the pathogenesis of metabolic diseases and cardiovascular diseases (CVDs). We investigated the association between Cr excretion and miRNA expression in leukocytes from obese subjects. We also examined the relationship between altered miRNA expression and selected clinical parameters to further investigate mechanisms linking Cr to metabolic diseases and CVDs.Subjects/Methods:We analyzed urinary Cr in 90 Italian subjects using inductively coupled plasma-mass spectrometry. Peripheral blood miRNA levels were screened with TaqMan Low-Density Array Human MicroRNA A. Cr level-associated expression of miRNAs was detected with multivariate regression analyses, and the top 10 candidate miRNAs were selected for validation. We also used multivariate regression analyses to assess possible associations between validated miRNAs and glycated hemoglobin (A1c) and blood pressure (BP). The validated miRNAs were further investigated by functional analysis with Ingenuity Pathway Analysis software.Results:Urinary Cr levels (mean: 0.35\u2009\u3bcg/l; s.d.=0.24) ranged from 0.05 to 1.27\u2009\u3bcg/l. In the screening phase, 43 miRNAs were negatively associated with Cr. Of the top 10 miRNAs selected for validation, nine (miR-451, miR-301, miR-15b, miR-21, miR-26a, miR-362-3p, miR-182, miR-183 and miR-486-3p) were downregulated in association with Cr (P-false discovery rate (FDR)<0.10). miR-451 expression was associated with A1c (\u3b2=\u20130.06; P=0.0416), whereas miR-486-3p expression was associated both with diastolic (\u3b2=2.1; P=0.004) and systolic BP (\u3b2=3.3; P=0.003).Conclusions:These results indicate that miR-451 and miR-486-3p are involved in the link between Cr levels and metabolic diseases and CVDs.European Journal of Clinical Nutrition advance online publication, 12 October 2016; doi:10.1038/ejcn.2016.197

    Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow

    Get PDF
    Individuals often considerably differ in the timing of their life-cycle events, with major consequences for individual fitness, and, ultimately, for population dynamics. Phenological variation can arise from genetic effects but also from epigenetic modifications in DNA expression and translation. Here, we tested if CpG methylation at the poly-Q and 5\u2032-UTR loci of the photoperiodic Clock gene predicted migration and breeding phenology of long-distance migratory barn swallows (Hirundo rustica) that were tracked year-round using light-level geolocators. Increasing methylation at Clock poly-Q was associated with earlier spring departure from the African wintering area, arrival date at the European breeding site, and breeding date. Higher methylation levels also predicted increased breeding success. Thus, we showed for the first time in any species that CpG methylation at a candidate gene may affect phenology and breeding performance. Methylation at Clock may be a candidate mechanism mediating phenological responses of migratory birds to ongoing climate change

    Inter-generational resemblance of methylation levels at circadian genes and associations with phenology in the barn swallow.

    Get PDF
    Regulation of gene expression can occur via epigenetic effects as mediated by DNA methylation. The potential for epigenetic effects to be transmitted across generations, thus modulating phenotypic variation and affecting ecological and evolutionary processes, is increasingly appreciated. However, the study of variation in epigenomes and inter-generational transmission of epigenetic alterations in wild populations is at its very infancy. We studied sex- and age-related variation in DNA methylation and parent-offspring resemblance in methylation profiles in the barn swallows. We focused on a class of highly conserved 'clock' genes (clock, cry1, per2, per3, timeless) relevant in the timing of activities of major ecological importance. In addition, we considerably expanded previous analyses on the relationship between methylation at clock genes and breeding date, a key fitness trait in barn swallows. We found positive assortative mating for methylation at one clock locus. Methylation varied between the nestling and the adult stage, and according to sex. Individuals with relatively high methylation as nestlings also had high methylation levels when adults. Extensive parent-nestling resemblance in methylation levels was observed. Occurrence of extra-pair fertilizations allowed to disclose evidence hinting at a prevalence of paternal germline or sperm quality effects over common environment effects in generating father-offspring resemblance in methylation. Finally, we found an association between methylation at the clock poly-Q region, but not at other loci, and breeding date. We thus provided evidence for sex-dependent variation and the first account of parent-offspring resemblance in methylation in any wild vertebrate. We also showed that epigenetics may influence phenotypic plasticity of timing of life cycle events, thus having a major impact on fitness

    Susceptibility to particle health effects, miRNA and exosomes : rationale and study protocol of the SPHERE study

    Get PDF
    Despite epidemiological findings showing increased air pollution related cardiovascular diseases (CVD), the knowledge of the involved molecular mechanisms remains moderate or weak. Particulate matter (PM) produces a local strong inflammatory reaction in the pulmonary environment but there is no final evidence that PM physically enters and deposits in blood vessels. Extracellular vesicles (EVs) and their miRNA cargo might be the ideal candidate to mediate the effects of PM, since they could be potentially produced by the respiratory system, reach the systemic circulation and lead to the development of cardiovascular effects.The SPHERE ("Susceptibility to Particle Health Effects, miRNAs and Exosomes") project was granted by ERC-2011-StG 282413, to examine possible molecular mechanisms underlying the effects of PM exposure in relation to health outcomes

    Studio della metilazione del DNA nella valutazione della cancerogenicit\ue0 di agenti ambientali e occupazionali

    No full text
    The present paper reviews recent laboratory methods and experimental evidence concerning epigenetic biomarkers involved in carcinogenesis mechanisms. We introduce DNA methylation and its role in gene expression control. DNA methylation analysis may allow to identify early changes leading to cancer and other chronic diseases. We describe here strategies for laboratory analyses and their possible applications. We examine results from recent experimental studies suggesting that the effects of certain occupational agents are mediated by alterations in DNA methylation. Planning and conducting investigations on exposed human subjects will allow to verify whether DNA methylation changes identified in animal and in-vitro studies may be used as early-effect and susceptibility biomarkers. DNA methylation analysis has the potential for future applications in risk assessment and prevention programs conducted on subjects exposed to human carcinogens
    corecore