1,078 research outputs found

    Comment on SU(16) grand unification

    Full text link
    In a recent paper on SU(16) grand unification, because of the presence of intermediate-energy gauge groups containing products of U(1) factors which are not orthogonal among themselves, the renormalization-group treatment has a few small errors. I correct it. I emphasize that one should not switch gauge couplings at the various thresholds. It is easier, and it avoids errors, to use throughout the gauge couplings of the standard model, and compute at each threshold, in the usual way, the extra contributions to the beta functions from the extra non-decoupled fields. I also point out that the SU(16) grand unification theory, due to the large number of scalars present in it, is not asymptotically free. It becomes a strong-coupling theory at energies only slightly larger than the unification scale.Comment: 5 latex pages, 2 tables, no figure

    Impact of right-handed interactions on the propagation of Dirac and Majorana neutrinos in matter

    Full text link
    Dirac and Majorana neutrinos can be distinguished in relativistic neutrino oscillations if new right-handed interactions exist, due to their different propagation in matter. We review how these new interactions affect neutrino oscillation experiments and discuss the size of this eventually observable effect for different oscillation channels, baselines and neutrino energies.Comment: 26 pages, 5 figure

    Bulk fields with general brane kinetic terms

    Full text link
    We analyse the effect of general brane kinetic terms for bulk scalars, fermions and gauge bosons in theories with extra dimensions, with and without supersymmetry. We find in particular a singular behaviour when these terms contain derivatives orthogonal to the brane. This is brought about by δ(0)\delta(0) divergences arising at second and higher order in perturbation theory. We argue that this behaviour can be smoothed down by classical renormalization.Comment: 31 pages, v2 few typos correcte

    Foreign Language Anxiety and Its Impacts on Students’ Speaking Competency

    Get PDF
    Anxiety may either have negative or positive impacts on one’s learning process. It is possible that anxiety may deteriorate the quality of learning process by making the learner intellectually and psychologically disturbed. In other cases, anxiety may increase students’ learning motivation due to the feeling of pressure. This study aimed to investigate the factors that contribute to students’ foreign language anxiety and its impacts on their speaking competency. The participants are university students taking English Conversation Class. Classroom observations were done to evaluate students’ speaking performance. Other instruments were Foreign Language Class Anxiety Scale (FLCAS) questionnaire and interviews. The results showed that the students had slightly high anxiety level; and there was an invert relationship between the anxiety level and the speaking scores. Several major factors that cause anxiety among the students have been identified, and it was also seen that anxiety has its most negative impacts on students’ communicative and interactive ability

    Top effective operators at the ILC

    Get PDF
    We investigate the effect of top trilinear operators in t tbar production at the ILC. We find that the sensitivity to these operators largely surpasses the one achievable by the LHC either in neutral or charged current processes, allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy of 500 GeV. We show how the use of beam polarisation and an eventual energy upgrade to 1 TeV allow to disentangle all effective operator contributions to the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE

    Top effective operators at the ILC

    Get PDF
    We investigate the effect of top trilinear operators in t tbar production at the ILC. We find that the sensitivity to these operators largely surpasses the one achievable by the LHC either in neutral or charged current processes, allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy of 500 GeV. We show how the use of beam polarisation and an eventual energy upgrade to 1 TeV allow to disentangle all effective operator contributions to the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE

    Z' Decays into Four Fermions

    Full text link
    If a new ZZ' is discovered with a mass 1 TeV\sim 1 \ TeV at LHC/SSC, its (rare) decays into two charged leptons plus missing transverse energy will probe the ZZ' coupling to the lepton doublet (ν,e)L(\nu,e)_L and to W+WW^+W^-, allowing further discrimination among extended electroweak models.Comment: 9 pages plus 1 figure (not included but available), UG-FT-22/9

    Leptophobic U(1)'s and the R_b - R_c Crisis

    Get PDF
    In this paper, we investigate the possibility of explaining both the R_b excess and the R_c deficit reported by the LEP experiments through Z-Z' mixing effects. We have constructed a set of models consistent with a restrictive set of principles: unification of the Standard Model (SM) gauge couplings, vector- like additional matter, and couplings which are both generation-independent and leptophobic. These models are anomaly-free, perturbative up to the GUT scale, and contain realistic mass spectra. Out of this class of models, we find three explicit realizations which fit the LEP data to a far better extent than the unmodified SM or MSSM and satisfy all other phenomenological constraints which we have investigated. One realization, the \eta-model coming from E_6, is particularly attractive, arising naturally from geometrical compactifications of heterotic string theory. This conclusion depends crucially on the inclusion of a U(1) kinetic mixing term, whose value is correctly predicted by renormalization group running in the E_6 model given one discrete choice of spectra.Comment: LaTeX, 26 pages, 5 embedded EPSF figures. Version to be published in Phys. Rev.

    Model-Independent Searches for New Quarks at the LHC

    Get PDF
    New vector-like quarks can have sizable couplings to first generation quarks without conflicting with current experimental constraints. The coupling with valence quarks and unique kinematics make single production the optimal discovery process. We perform a model-independent analysis of the discovery reach at the Large Hadron Collider for new vector-like quarks considering single production and subsequent decays via electroweak interactions. An early LHC run with 7 TeV center of mass energy and 1 fb-1 of integrated luminosity can probe heavy quark masses up to 1 TeV and can be competitive with the Tevatron reach of 10 fb-1. The LHC with 14 TeV center of mass energy and 100 fb-1 of integrated luminosity can probe heavy quark masses up to 3.7 TeV for order one couplings.Comment: 37 pages, 11 figures, 7 table
    corecore