133 research outputs found

    Particle Swarm Optimization for HW/SW Partitioning

    Get PDF

    Simulation and performance assessment of a modified throttled load balancing algorithm in cloud computing environment

    Get PDF
    Load balancing is crucial to ensure scalability, reliability, minimize response time, and processing time and maximize resource utilization in cloud computing. However, the load fluctuation accompanied with the distribution of a huge number of requests among a set of virtual machines (VMs) is challenging and needs effective and practical load balancers. In this work, a two listed throttled load balancer (TLT-LB) algorithm is proposed and further simulated using the CloudAnalyst simulator. The TLT-LB algorithm is based on the modification of the conventional TLB algorithm to improve the distribution of the tasks between different VMs. The performance of the TLT-LB algorithm compared to the TLB, round robin (RR), and active monitoring load balancer (AMLB) algorithms has been evaluated using two different configurations. Interestingly, the TLT-LB significantly balances the load between the VMs by reducing the loading gap between the heaviest loaded and the lightest loaded VMs to be 6.45% compared to 68.55% for the TLB and AMLB algorithms. Furthermore, the TLT-LB algorithm considerably reduces the average response time and processing time compared to the TLB, RR, and AMLB algorithms

    Inferring Mobility of Care Travel Behavior From Transit Origin-Destination Data

    Full text link
    There are substantial differences in travel behavior by gender on public transit. Studies have concluded that these differences are largely attributable to household responsibilities typically falling disproportionately on women, leading to women being more likely to utilize transit for purposes referred to by the umbrella concept of "mobility of care". In contrast to past studies that have quantified the impact of gender using survey and qualitative data, we propose a novel data-driven workflow utilizing a combination of previously developed origin, destination, and transfer inference (ODX) based on individual transit fare card transactions, name-based gender inference, and geospatial analysis as a framework to identify mobility of care trip making. We apply this framework to data from the Washington Metropolitan Area Transit Authority (WMATA). Analyzing data from millions of journeys conducted in the first quarter of 2019, the results of this study show that our proposed workflow can identify mobility of care travel behavior, detecting times and places of interest where the share of women travelers in an equally-sampled subset (on basis of inferred gender) of transit users is 10% - 15% higher than that of men. The workflow presented in this study provides a blueprint for combining transit origin-destination data, inferred customer demographics, and geospatial analyses enabling public transit agencies to assess, at the fare card level, the gendered impacts of different policy and operational decisions.Comment: Updated reference formatting and discussion point

    Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a

    Get PDF
    DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Niclosamide Is Active In Vitro against Mycetoma Pathogens

    No full text
    Redox-active drugs are the mainstay of parasite chemotherapy. To assess their repurposing potential for eumycetoma, we have tested a set of nitroheterocycles and peroxides in vitro against two isolates of Madurella mycetomatis, the main causative agent of eumycetoma in Sudan. All the tested compounds were inactive except for niclosamide, which had minimal inhibitory concentrations of around 1 µg/mL. Further tests with niclosamide and niclosamide ethanolamine demonstrated in vitro activity not only against M. mycetomatis but also against Actinomadura spp., causative agents of actinomycetoma, with minimal inhibitory concentrations below 1 µg/mL. The experimental compound MMV665807, a related salicylanilide without a nitro group, was as active as niclosamide, indicating that the antimycetomal action of niclosamide is independent of its redox chemistry (which is in agreement with the complete lack of activity in all other nitroheterocyclic drugs tested). Based on these results, we propose to further evaluate the salicylanilides, niclosamidein particular, as drug repurposing candidates for mycetoma

    Prediction of O-glycosylation Sites Using Random Forest and GA-Tuned PSO Technique

    No full text
    O-glycosylation is one of the main types of the mammalian protein glycosylation; it occurs on the particular site of serine (S) or threonine (T). Several O-glycosylation site predictors have been developed. However, a need to get even better prediction tools remains. One challenge in training the classifiers is that the available datasets are highly imbalanced, which makes the classification accuracy for the minority class to become unsatisfactory. In our previous work, we have proposed a new classification approach, which is based on particle swarm optimization (PSO) and random forest (RF); this approach has considered the imbalanced dataset problem. The PSO parameters setting in the training process impacts the classification accuracy. Thus, in this paper, we perform parameters optimization for the PSO algorithm, based on genetic algorithm, in order to increase the classification accuracy. Our proposed genetic algorithm-based approach has shown better performance in terms of area under the receiver operating characteristic curve against existing predictors. In addition, we implemented a glycosylation predictor tool based on that approach, and we demonstrated that this tool could successfully identify candidate glycosylation sites in case study protein
    corecore