
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 12, No. 2, April 2022, pp. 2087~2096

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i2.pp2087-2096 2087

Journal homepage: http://ijece.iaescore.com

Simulation and performance assessment of a modified throttled

load balancing algorithm in cloud computing environment

Noha G. Elnagar1, Ghada F. Elkabbany2, Amr A. Al-Awamry1, Mohamed B. Abdelhalim3
1Electrical Department, Benha Faculty of Engineering, Benha University, Benha, Egypt.

2Informatics Research Department, Electronics Research Institute, Cairo, Egypt
3College of Computing and Information Technology, Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt

Article Info ABSTRACT

Article history:

Received Feb 20, 2021

Revised Aug 3, 2021

Accepted Sep 1, 2021

 Load balancing is crucial to ensure scalability, reliability, minimize response

time, and processing time and maximize resource utilization in cloud

computing. However, the load fluctuation accompanied with the distribution

of a huge number of requests among a set of virtual machines (VMs) is

challenging and needs effective and practical load balancers. In this work, a

two listed throttled load balancer (TLT-LB) algorithm is proposed and further

simulated using the CloudAnalyst simulator. The TLT-LB algorithm is based

on the modification of the conventional throttled load balancer (TLB)

algorithm to improve the distribution of the tasks between different VMs. The

performance of the TLT-LB algorithm compared to the TLB, round robin

(RR), and active monitoring load balancer (AMLB) algorithms has been

evaluated using two different configurations. Interestingly, the TLT-LB

significantly balances the load between the VMs by reducing the loading gap

between the heaviest loaded and the lightest loaded VMs to be 6.45%

compared to 68.55% for the TLB and AMLB algorithms. Furthermore, the

TLT-LB algorithm considerably reduces the average response time and

processing time compared to the TLB, RR, and AMLB algorithms.

Keywords:

Cloud computing

CloudAnalyst

Load balancing

Modified throttled load balancer

Task allocation

This is an open access article under the CC BY-SA license.

Corresponding Author:

Noha G. Elnagar

Electrical Department, Benha Faculty of Engineering, Benha University

Benha, Egypt

Email: eng.noha17@gmail.com

1. INTRODUCTION

Cloud computing has emerged as a durable and evolving paradigm that offers massive opportunities

for the information and communication technology industry. It is a powerful distributed computing platform

for several indispensable applications including financial accounting feature [1], health care systems [2],

meteorological prediction [3], networking, file storage and sharing as well as data collections [4], just to name

a few. These potential applications of cloud computing are due to its several merits, such as resource

maximization, customization, fast response to business needs, scalability, elasticity, off-site access, and cost-

saving compared to hardware systems [5].

The cloud computing environment comprises three main layers, namely infrastructure as a service

(IaaS), platform as a service (PaaS), and software as a service (SaaS) [6]. The basic layer of cloud computing

is the infrastructure layer, where the cloud offers shared hardware needed for the users. In IaaS, the

virtualization software controls the access of users to partition and multiplex physical resources such as CPU,

memory, I/O, storage, and network resources [7]. However, access of several thousands of users to a cloud data

center (DC) leads to overloading, power consumption, and longer response time that could end up with a system

failure.

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2087-2096

2088

Load imbalancing is one of the major issues that restrict the development of cloud computing

technology and still need to be addressed. Consequently, designing and applying a practical load balancing

system to manage the workloads is of particular interest. An efficient load balancing algorithm is characterized

by a decrease in the loading gap between the heaviest loaded and the lightest loaded virtual machines (VMs),

with enhanced resource utilization [8]. Moreover, it reduces the average required processing time and response

time, which is essential for performing the received tasks in cloud DCs [9]. In this respect, several load-

balancers have been proposed considering the aforementioned aspects [10]–[22]. Among the algorithms, round

robin (RR), active monitoring load balancer (AMLB), throttled load balancer (TLB) are common load

balancing algorithms in large-scale cloud environment using cloud simulator [23]–[29].

Load balancing algorithms can be categorized into static and dynamic algorithms [24]. Static

algorithms such as the RR algorithm are typically suitable for a stable and homogeneous environment [30],

[31]. On the other hand, dynamic algorithms such as AMLB and TLB algorithms are more flexible and can

easily offer run time changes ability [26], [31]. The RR algorithm works in a circular arrangement, whereas all

the VMs are employed, and the load is equally distributed among all servers depending on the time interval.

The main issue of the RR algorithm is that it directly assigns the task to the VM in sequences without checking

the capacity of the VM. Furthermore, it does not consider the state of the VM (available or busy) [32], [33]. In

the AMLB algorithm, the number of requests assigned to each VM is monitored. When a new task arrives, it

will be allocated to the VM with the least number of tasks. In case of more than one VM is available, the first

recognized VM is selected, and AMLB returns the VM id to the data center controller (DCC) [34], [35].

Besides, TLB is a dynamic algorithm in nature, which assigns all received tasks to the available VMs. It

determines the suitable VM for assigning a specific task by considering the state of the VM (available or busy)

stated in the allocation table. When the number of requests is larger than the number of the available VM, the

requests will be waiting until the VM becomes available [24], [25], [27], [36]. The limitation of TLB is that it

checks for the available VM in the allocation table starting from the first VM every time, and it does not

continue from the last allocated VM. Moreover, it does not count the number of the assigned tasks to each VM

[34]. Based on these observations, the conventional algorithms have some limitations which produce less-

effective load balancing. Therefore, the potential modification of these algorithms, particularly the TLB

algorithm would be superior to develop an applicable algorithm for efficient load-balancing in cloud computing

environment.

In this work, a two listed throttled algorithm (TLT-LB) is proposed and simulated. The TLT-LB

algorithm aims at distributing the delivered tasks among the available VMs in an effective way taking into

account the average processing time and response time. The suggested TLT-LB algorithm is based on the

modification of the TLB algorithm by classifying the list of the VMs into two lists, namely available VMs and

busy VMs. Consequently, when the available VM receives a specific task, its status turned into busy, and it is

moved to the end of the busy VMs list. After performing the required task, the state of the busy VM switched

to be available at the end of the available VMs list. CloudAnalyst simulation tool was employed to simulate

the TLT-LB algorithm using two configurations based on different user bases to evaluate the average

Processing time and Response time. Furthermore, a comparative study between the present TLT-LB algorithm

and the TLB, RR, and AMLB algorithms is performed in CloudAnalyst considering the main performance

metrics. The results reveal that the TLT-LB algorithm remarkably improved the load distribution among the

VMs and minimized the average processing time and response time compared to the TLB, RR, and AMLB.

The remaining of the paper is organized as follows; section 2 summarizes a selection of the recent

related studies to illustrate the main concepts of cloud load balancing and its categories. Section 3 describes in

detail the proposed TLT-LB algorithm to be easily reproduced. Section 4 shows the experimental part for the

simulation of the proposed algorithm on the CloudAnalyst platform. Section 5 displays the results and

discussions, providing a clear overview regarding the merits of using the proposed algorithm over the TLB,

RR, and AMLB algorithms. Finally, in Section 6 the conclusions are demonstrated.

2. RELATED WORK
Load balancing in cloud computing systems has been extensively studied over the last decades [35],

[37]. In this section, some recent research studies on cloud load balancing are highlighted. Sakthivelmurugan

et al. [38] introduced an algorithm named hospitality load balancing (HLB) algorithm. In the beginning, all

VMs are available, and there is an index table that contains different VMs and their status

BUSY/AVAILABLE. When a new task arrives, the capacity and load of all VMs are calculated. Then, it has

to check the system, whether it is balanced or not. If the load is larger than the maximum capacity of VMs, the

VMs are grouped into underloaded, overloaded, and balanced VM. To solve the problem of load imbalance,

the HLB algorithm finds the underloaded VM and overloaded VM as well as sorting them in

ascending/descending order, and then the tasks are migrated from the overloaded to the underloaded VMs. The

Int J Elec & Comp Eng ISSN: 2088-8708

 Simulation and performance assessment of a modified throttled load balancing … (Noha G. Elnagar)

2089

migrated task must be assigned to the underloaded VM with the shortest path. Although this algorithm helps

to achieve low response time, low make span, low task migration time, and handle heterogeneous host, it does

not consider the status of the VM before task migration.

Mirobi and Arockiam [39] proposed an enhanced throttled load balancer (ETLB) that allocated the

workloads uniformly to all VMs. By using the threshold value, the load balancer classified the VMs to

overloaded, balanced, and under-loaded VMs. In the case of an overloaded VM is found, the ETLB searches

for an appropriate underloaded VM and automatically sends the task to it, thereby balancing the load on VMs.

This balancer determines the load of each VM after assigning the task to a VM and then migrates the tasks

between overloaded and underloaded VMs. This may lead to a decrease in system efficiency and cause a delay

in achieving the tasks.

Shetty and Shetty [40] suggested a modified central load balancer (MCLB) algorithm which has a

table that comprises the ids, status, and priority of the VMs. This algorithm finds the VM with the highest

priority and which is available for assigning the arrived task. In case of all VMs are busy, the arrived task is

assigned to the first available VM without considering the priority of this VM, which means that the sequence

of the algorithm will not be applicable.

Ghosh and Banerjee [41] suggested a priority-based modified throttled algorithm (PMTA). The idea

of this algorithm depends on the TLB, which assigns the submitted tasks directly to the available VMs. In case

of all VMs are busy, the algorithm compares the priority of the new received task to the executing task. A

Switching queue was proposed to hold the task which has been removed temporarily from the VM due to the

arrival of a higher priority task. The waiting task resumed the execution after completion of the higher priority

task. This algorithm suffers from task delay, where some of the paused tasks could be lost or delayed because

of their low priority.

Domanal and Reddy [42] proposed a modified throttled algorithm that assigned the incoming tasks

uniformly to a set of VMs and improved the response time. In this algorithm, the VMs are indexed in a table,

with status either available or busy similar to the standard TLB algorithm. An available VM is selected for the

request, and its id is returned to the DC. For processing the following request, the VM that is found next to the

assigned VM in the table is selected. The choice of the selected VM is depending on the status of the VM

without parsing the index table from the beginning every time. This study focused on minimizing response

time without considering the processing time. These studies reveal the influential role of load balancers to

boost the performance of the cloud computing environment. However, some of these mentioned algorithms do

not consider the requirements and priorities of the user. For example, some of these algorithms do not monitor

the resource load during task allocation, which can lead to defeat the task execution and increase the processing

time and response time. The main objective of this work is to enhance the TLB algorithm by decreasing both

the processing time and response time. Besides, it effectively improves the load distribution among the VMs.

In the next section, the proposed TLT-LB is illustrated.

3. RESEARCH METHOD

3.1. Proposed TLT-LB algorithm

The TLB algorithm has several advantages such as simplicity, dynamicity, and effectiveness in terms

of response time and processing time [25], [27], [34] However, it resolves the VM list from the first VM every

time, resulting in unequally load distribution. In this paper, a Two Listed Throttled Load Balancing TLT-LB

algorithm is introduced. TLT-LB distributes the required tasks among the VMs effectively, for improving the

response time and processing time compared to the conventional TLB, RR and AMLB algorithms. In the

TLT-LB algorithm, the VMs are categorized into two lists, namely “Available VMs list” and “Busy VMs list”.

Accordingly, when an available VM delivers a specific task; its status turned into busy and moved to the end

of the “Busy VMs list”. After execution, the status of the busy VM switched to be available and moved to the

end of the “Available VMs list”. In the TLT-LB algorithm, the DCC receives all requests from different regions

and forwards the tasks to TLT-VmLoadBalancer. Then, TLT-VmLoadBalancer allocates the tasks to the

available VMs. When a new task arrives, the TLT-VmLoadBalancer maintains the “Available VMs list” and

returns the “id” of the first available VM to the DCC. Then, the TLT-VmLoadBalancer assigns the task to the

selected VM. If all VMs are busy, the received tasks will be queued, and the DCC waits for the first available

VM to assign the waited task(s). Then, the allocated VM is removed from the “Available VMs list” and moved

to the end of the “Busy VMs list”. The basic methodology and steps of the proposed algorithm are shown in

Figure 1(a) and (b).

3.2. Simulation
CloudSim is a toolkit that can be used for modeling, simulation, and scheduling of a large-scaled

cloud platform [43], [44]. CloudAnalyst simulation packages are developed on CloudSim Toolkit-3.0.3

architecture. The main components of CloudAnalyst are region, internet, user base, InternetCloudlet, GUI,

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2087-2096

2090

Cloud Service Broker, VmLoadBalancer, and DCC. These components are explained in Figure 2. In this work,

CloudAnalyst is employed to analyze the proposed TLT-LB, TLB, RR, and AMLB algorithms because of its

graphical user interface and high level of visualization [20], [35], [45]. CloudAnalyst package is configured

using Eclipse IDE for Java Developer 2.0.1 and JDK 1.8.0 on Windows 10 operating system. The model of

the system comprises one DC which has several homogeneous VMs ‘m’ (VM0, VM1, VM2VMm-1) with

1000 MB Image size, 512 MB memory, and 1000 MB bandwidth, as well as the number of independent tasks

‘n’ (T1, T2, T3......Tn). The selected parameters for the proposed TLT-LB algorithm using the two configurations

are user base, region, peak hour start, peak hour end, and average users at peak and off-peak hours, as shown

in Table 1 and Table 2, respectively. The DC configurations are X86 architecture, Linux operating system, xen

virtual machine manager (VMM). The DC contains two physical hardware units. Each physical unit has the

following configuration: 204800 RAM (MB), 100 storage space (TB), 1000000 available bandwidths,

4 processors that have a capacity power of 10000 MIPS, and a TIME_SHARED VM scheduling policy. The

main influential metrics including load-distribution, response time, processing time, and the total cost of total

VM cost and total data transfer cost are assessed for the proposed TLT-LB algorithm compared to TLB, RR,

and AMLB algorithms using two configurations. Figures 3 illustrate the snapshot of advanced configuration in

CloudAnalyst. Moreover, Figure 4 presents a snapshot of the regions used in the simulation.

(a)

(b)

Figure 1. The TLT-LB algorithm shown as (a) TLT-LB block diagram and (b) TLT-LB workflow

The response time, processing time, load-distribution, and the total cost are assessed according to the

following (1)-(4) [20]. The response time is the time required to respond to a user’s request for service [24]

and can be calculated using (1):

Int J Elec & Comp Eng ISSN: 2088-8708

 Simulation and performance assessment of a modified throttled load balancing … (Noha G. Elnagar)

2091

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑇𝑓𝑖𝑛𝑖𝑠ℎ − 𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙 + 𝑇𝑑𝑒𝑙𝑎𝑦 (1)

where Tfinish is the finish time of user request, Tarrival is the arrival time of user request and Tdelay is the

transmission delay. Tdelay can be calculated as:

𝑇𝑑𝑒𝑙𝑎𝑦 = 𝑇𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

where Tlatency is the network latency which is the delay time before the beginning of data transfer and Ttransfer is

the time taken to transfer the amount of data of a single request (D) from the source location to the destination

location. Tlatency is taken from the latency matrix (after applying Poisson distribution). Ttransfer can be calculated

as follow:

𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝐷 / 𝐵𝑤𝑝𝑒𝑟𝑢𝑠𝑒𝑟 𝑎𝑛𝑑 𝐵𝑤𝑝𝑒𝑟𝑢𝑠𝑒𝑟 = 𝐵𝑤𝑡𝑜𝑡𝑎𝑙 / 𝑁;

where Bwperuser and Bwtotal are the bandwidth per user and the total available bandwidth (held in the

InternetCharacteristics class in CloudAnalyst) respectively, while N is the number of user requests currently in

transmission. The internet characteristics also keeps track of the number of user requests in-flight between two

regions for the value of N.

Besides, the average processing time is the time required by the DC to process all the received tasks

from the users. It is calculated using (2) [46]:

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝐿𝑉𝑀𝑠/𝐶𝑉𝑀𝑠 (2)

where LVMs is the sum of the load on each VM in the DC and CVMs is the sum of the capacity of each VM in

DC. The following formula is used to calculate the capacity of individual VM:

𝐶𝑉𝑀 = 𝑝 ∗ 𝑞

where CVM is the capacity for only one VM, P is the processing speed of the processor (CPU) in million

instructions per second and q=number of busy CPU.

The load distribution (%) is calculated according to (3).

𝐿𝑜𝑎𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 % =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑜𝑛 𝑉𝑀𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑜𝑛 𝑎𝑙𝑙 𝑉𝑀𝑠
× 100

(3)

The total cost is a very important parameter in cloud computing as it is paid on a pay-per-use basis, which

depends on the percentage of resource utilization [24], [47]. The total cost of processing a task can be calculated

using (4).

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 (4)

Table 1. Simulation parameters of the first configuration
User Base Region Peak hour start (GMT) Peak hour end (GMT) Avg peak users Avg off-peak users

1 0-N. America 3 9 1000 100

2 1-S. America 3 9 1000 100
3 2-Europe 3 9 1000 100

4 3-Asia 3 9 1000 100

5 4-Africa 3 9 1000 100
6 5-Oceania 3 9 1000 100

Table 2. Simulation parameters of the second configuration
User Base Region Peak hour start (GMT) Peak hour end (GMT) Avg peak users Avg off-peak users

1 0-N. America 1 4 235000 23500
2 1-S. America 4 6 225000 22500

3 2-Europe 18 21 535000 53500

4 3-Asia 8 12 755000 75500
5 4-Africa 21 24 100000 10000

6 5-Oceania 6 8 170000 17000

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2087-2096

2092

Figure 2. Main components of CloudAnalyst

Figure 3. Snapshot of advanced configuration in CloudAnalyst

Figure 4. Snapshot of the regions used in the simulation

Int J Elec & Comp Eng ISSN: 2088-8708

 Simulation and performance assessment of a modified throttled load balancing … (Noha G. Elnagar)

2093

4. RESULTS AND PERFORMANCE EVALUATION

In this section, the simulation results of the TLT-LB algorithm using both the first and second

configurations are presented to evaluate the performance of the proposed algorithm. The load distribution (%)

for the TLT-LB algorithm compared to TLB and AMLB algorithms are presented in Figure 5. Interestingly,

the load among the VMs is significantly distributed using the TLT-LB algorithm compared to TLB, and AMLB

algorithms. In particular, the difference in the load distribution between the first VM and the last VM using the

TLT-LB algorithm is in the range of 3-7%. In comparison, the load gap between the first VM and the last VM

for TLB, and AMLB algorithms is more than 68%, which indicates that some VMs are over-loaded (VM0 and

VM1), and the others are under-loaded (VM3 to VM9). These results reveal the applicability and high-

performance of the TLT-LB algorithm, which decreases the load gap between the first and the last VM from

68.55% to 6.446% compared to the conventional TLB, and AMLB algorithms.

Figure 5. The load distribution (%) among the VMs after simulation of TLT-LB, TLB, and AMLB

The average response time and the average data center processing time are analyzed in milliseconds

for the TLT-LB, TLB, RR, and AMLB algorithms. The results for the first configuration are shown in

Figure 6(a) and 6(b). Generally, the average response time increases when the number of VMs increases for

all the simulated algorithms. Besides, the response time decreases using the TLT-LB algorithm in contrast to

the other algorithms for different numbers of VMs due to reducing the loading gap between the heaviest loaded

and the lightest loaded VMs. However, there are no obvious changes in the processing time for the TLT-LB,

TLB, RR, and AMLB algorithms. Therefore, the simulation conditions are changed by increasing the number

of users to get more insights about the performance of the TLT-LB algorithm in terms of the average processing

time related to TLB, RR, and AMBL algorithms.

292.0

292.2

292.4

292.6

292.8

293.0

293.2

293.4

100502510

A
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s

)

Number of VMs

 TLT-LB

 TLB

 RR

 AMBL

5

(a)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

(b)

100502510

A
v
e
ra

g
e
 p

ro
c
e
s
s
in

g
 t

im
e
 (

m
s
)

Number of VMs

 TLT-LB

 TLB

 RR

 AMBL

5

(a) (b)

Figure 6. The result of different algorithms using the first configuration in (a) the response time and

(b) processing time

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2087-2096

2094

Figure 7 illustrates the response time and processing time for the second configuration using

200 VMs. The response time and processing time considerably decrease for the TLT-LB algorithm compared

to the other algorithms. As shown in Figure 7(a), the response time after using the TLT-LB algorithm decreases

by 2.380%, 4.515%, and 2.164% compared to the TLB, RR, and AMLB algorithms respectively. In addition,

Figures 7(b), (c) show that the processing time for the TLT-LB algorithm sustainably minimizes by 0.454%,

49.159%, and 40.462% in comparison to TLB, RR, and AMLB algorithms respectively. Figure 7(c) illustrates

the difference between the TLT-LB and TLB algorithms in terms of processing time. The response time and

processing time decrease using the second configuration rather than the first one. These results reveal that

optimizing the conditions and selecting the proper parameters is a crucial step to evaluate the performance of

different algorithms. Finally, the estimated total cost for the TLT-LB algorithm is $147.93, which equals to its

counterpart for the TLB, RR, and AMLB algorithms.

348

350

352

354

356

358

360

362

364

366

368

(a)

A
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s

)

Number of VMs (200)

 TLT-LB

 TLB

 RR

 AMLB

8

10

12

14

16

18

(b)

A
v

e
ra

g
e

 P
ro

c
e
s

s
in

g
 t

im
e

 (
m

s
)

Number of VMs (200)

 TLT-LB

 TLB

 RR

 AMLB

(a) (b)

8.75

8.76

8.77

8.78

8.79

8.80

8.81

(c)

A
v
e
ra

g
e
 P

ro
c
e
s
s
in

g
 t

im
e
 (

m
s
)

Number of VMs (200)

 TLT-LB

 TLB

(c)

Figure 7. The result of different algorithms using the second configuration in (a) the response time and (b), (c)

processing time

5. CONCLUSION

The efficiency of task allocation in the cloud environment depends on the efficiency of the load

balancing algorithm. Therefore, using an adaptable load balancer for a cloud computing environment is a

critical step to achieve maximum utilization of resources. In this respect, a TLT-LB algorithm is proposed to

allocate the workload dynamically and effectively among the VMs. Two configurations employing different

simulation parameters (user bases) are applied to assess the performance of the TLT-LB algorithm concerning

the average response time, processing time, and cost. The performance of the proposed TLT-LB algorithm is

compared with three well-known algorithms, namely RR, TLB, and AMLB. The CloudAnalyst package which

is developed on CloudSim Toolkit-3.0.3 architecture is employed for the simulation process. Results indicate

the applicability of the proposed TLT-LB algorithm to distribute the tasks among the VMs in an effective way

since the load difference between the VMs is in the range of 3-7%. Moreover, it significantly reduces the

average response time and processing time, which leads to an increase in the throughput of the system when

Int J Elec & Comp Eng ISSN: 2088-8708

 Simulation and performance assessment of a modified throttled load balancing … (Noha G. Elnagar)

2095

comparing to the conventional algorithms. These findings show that the proposed TLT-LB is more practical

than TLB, RR, and AMLB algorithms for a stable and effective cloud computing environment. In the future,

we plan to extend this work considering more factors for utilizing the proposed TLT-LB algorithm in healthcare

systems.

REFERENCES
[1] O. Dimitriu and M. Matei, “A new paradigm for accounting through cloud computing,” Procedia Economics and Finance, vol. 15,

pp. 840–846, 2014, doi: 10.1016/S2212-5671(14)00541-3.

[2] N. Sultan, “Making use of cloud computing for healthcare provision: Opportunities and challenges,” International Journal of

Information Management, vol. 34, no. 2, pp. 177–184, Apr. 2014, doi: 10.1016/j.ijinfomgt.2013.12.011.
[3] M. Yang et al., “An efficient storage and service method for multi-source merging meteorological big data in cloud environment,”

EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1, Dec. 2019, Art. no. 241, doi: 10.1186/s13638-

019-1576-0.
[4] O. Ali, A. Shrestha, J. Soar, and S. F. Wamba, “Cloud computing-enabled healthcare opportunities, issues, and applications: A

systematic review,” International Journal of Information Management, vol. 43, pp. 146–158, Dec. 2018, doi:

10.1016/j.ijinfomgt.2018.07.009.
[5] M. G. Avram, “Advantages and challenges of adopting cloud computing from an enterprise perspective,” Procedia Technology,

vol. 12, pp. 529–534, 2014, doi: 10.1016/j.protcy.2013.12.525.

[6] P. M. Mell and T. Grance, “The NIST definition of cloud computing,” National Institute of Standards and Technology, Gaithersburg,
MD, 2011. doi: 10.6028/NIST.SP.800-145.

[7] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual infrastructure management in private and hybrid clouds,” IEEE
Internet Computing, vol. 13, no. 5, pp. 14–22, Sep. 2009, doi: 10.1109/MIC.2009.119.

[8] S. Mustafa, B. Nazir, A. Hayat, A. U. R. Khan, and S. A. Madani, “Resource management in cloud computing: Taxonomy,

prospects, and challenges,” Computers & Electrical Engineering, vol. 47, pp. 186–203, Oct. 2015, doi:
10.1016/j.compeleceng.2015.07.021.

[9] A. Subhi Abdalkafor, A. Abdalqahar Jihad, and E. Tariq Allawi, “A cloud computing scheduling and its evolutionary approaches,”

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 21, no. 1, pp. 489–496, Jan. 2021, doi:
10.11591/ijeecs.v21.i1.pp489-496.

[10] R. Mishra, “Ant colony Optimization: A Solution of Load balancing in Cloud,” International journal of Web & Semantic

Technology, vol. 3, no. 2, pp. 33–50, Apr. 2012, doi: 10.5121/ijwest.2012.3203.
[11] D. B. L.D. and P. Venkata Krishna, “Honey bee behavior inspired load balancing of tasks in cloud computing environments,”

Applied Soft Computing, vol. 13, no. 5, pp. 2292–2303, May 2013, doi: 10.1016/j.asoc.2013.01.025.

[12] K. Dubey and S. C. Sharma, “An extended intelligent water drop approach for efficient VM allocation in secure cloud computing

framework,” Journal of King Saud University - Computer and Information Sciences, Nov. 2020, doi: 10.1016/j.jksuci.2020.11.001.

[13] D. Chaudhary and R. Singh Chhillar, “A New Load Balancing Technique for Virtual Machine Cloud Computing Environment,”

International Journal of Computer Applications, vol. 69, no. 23, pp. 37–40, May 2013, doi: 10.5120/12114-8498.
[14] M. Hijab and A. Damodaram, “Weighted randomized algorithms for efficient load balancing in distributed computing

environments,” Materials Today: Proceedings, vol. 33, pp. 3782–3786, 2020, doi: 10.1016/j.matpr.2020.06.216.

[15] F. Garcia-Carballeira, A. Calderon, and J. Carretero, “Enhancing the power of two choices load balancing algorithm using round
robin policy,” Cluster Computing, vol. 24, no. 2, pp. 611–624, Jun. 2021, doi: 10.1007/s10586-020-03139-6.

[16] S. R. Gundu, C. A. Panem, and A. Thimmapuram, “Real-Time Cloud-Based Load Balance Algorithms and an Analysis,” SN

Computer Science, vol. 1, no. 4, Jul. 2020, Art. no. 187, doi: 10.1007/s42979-020-00199-8.
[17] S. Ouhame and Y. Hadi, “Enhancement in resource allocation system for cloud environment using modified grey wolf technique,”

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 20, no. 3, pp. 1530–1537, Dec. 2020, doi:

10.11591/ijeecs.v20.i3.pp1530-1537.
[18] T. Kokilavani and D. I. George Amalarethinam, “Load balanced MinMin algorithm for static MetaTask scheduling in grid

computing,” International Journal of Computer Applications, vol. 20, no. 2, pp. 42–48, Apr. 2011, doi: 10.5120/2403-3197.

[19] B. Mondal, K. Dasgupta, and P. Dutta, “Load balancing in cloud computing using stochastic hill climbing-a soft computing
approach,” Procedia Technology, vol. 4, pp. 783–789, 2012, doi: 10.1016/j.protcy.2012.05.128.

[20] B. Wickremasinghe and Others, “Cloudanalyst: a cloudsim-based tool for modelling and analysis of large scale cloud computing

environments,” MEDC project report, vol. 22, no. 6. pp. 433–659, 2009.
[21] J. McCall, “Genetic algorithms for modelling and optimisation,” Journal of Computational and Applied Mathematics, vol. 184,

no. 1, pp. 205–222, Dec. 2005, doi: 10.1016/j.cam.2004.07.034.

[22] A. K. Sharma, K. Upreti, and B. Vargis, “Experimental performance analysis of load balancing of tasks using honey bee inspired
algorithm for resource allocation in cloud environment,” Materials Today: Proceedings, Oct. 2020, doi:

10.1016/j.matpr.2020.09.359.

[23] M. A. Shahid, N. Islam, M. M. Alam, M. M. Su’ud, and S. Musa, “A comprehensive study of load balancing approaches in the
cloud computing environment and a novel fault tolerance approach,” IEEE Access, vol. 8, pp. 130500–130526, 2020, doi:

10.1109/ACCESS.2020.3009184.

[24] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in cloud computing: A big picture,” Journal of King Saud University -
Computer and Information Sciences, vol. 32, no. 2, pp. 149–158, Feb. 2020, doi: 10.1016/j.jksuci.2018.01.003.

[25] A. M. Manasrah, A. Aldomi, and B. B. Gupta, “An optimized service broker routing policy based on differential evolution algorithm

in fog/cloud environment,” Cluster Computing, vol. 22, no. S1, pp. 1639–1653, Jan. 2019, doi: 10.1007/s10586-017-1559-z.
[26] A. Jyoti, M. Shrimali, S. Tiwari, and H. P. Singh, “Cloud computing using load balancing and service broker policy for IT service:

a taxonomy and survey,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 11, pp. 4785–4814, Nov. 2020,

doi: 10.1007/s12652-020-01747-z.
[27] Z. Benlalia, K. Abouelmehdi, A. Beni-hssane, and A. Ezzati, “Comparing load balancing algorithms for web application in cloud

environment,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 17, no. 2, Feb. 2020, Art. no.

1104, doi: 10.11591/ijeecs.v17.i2.pp1104-1108.
[28] A. A. AlKhatib, T. Sawalha, and S. AlZu’bi, “Load balancing techniques in software-defined cloud computing: an overview,” in

2020 Seventh International Conference on Software Defined Systems (SDS), Apr. 2020, pp. 240–244, doi:
10.1109/SDS49854.2020.9143874.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2087-2096

2096

[29] S. Afzal and G. Kavitha, “Load balancing in cloud computing – A hierarchical taxonomical classification,” Journal of Cloud

Computing, vol. 8, no. 1, Dec. 2019, Art. no. 22, doi: 10.1186/s13677-019-0146-7.
[30] S.-L. Chen, Y.-Y. Chen, and S.-H. Kuo, “CLB: A novel load balancing architecture and algorithm for cloud services,” Computers

& Electrical Engineering, vol. 58, pp. 154–160, Feb. 2017, doi: 10.1016/j.compeleceng.2016.01.029.

[31] N. R. Tadapaneni, “A survey of various load balancing algorithms in cloud computing,” International Journal for Science and
Advance Research in Technology, vol. 6, no. 4, pp. 484–487, 2020.

[32] R. V. Rasmussen and M. A. Trick, “Round robin scheduling – a survey,” European Journal of Operational Research, vol. 188,

no. 3, pp. 617–636, Aug. 2008, doi: 10.1016/j.ejor.2007.05.046.
[33] S. Banerjee, A. Roy, A. Chowdhury, R. Mutsuddy, R. Mandal, and U. Biswas, “An Approach Toward Amelioration of a New

Cloudlet Allocation Strategy Using Cloudsim,” Arabian Journal for Science and Engineering, vol. 43, no. 2, pp. 879–902, Feb.

2018, doi: 10.1007/s13369-017-2781-y.
[34] S. Patel, R. Patel, H. Patel, and S. Vahora, “CloudAnalyst : A survey of load balancing policies,” International Journal of Computer

Applications, vol. 117, no. 21, pp. 21–24, May 2015, doi: 10.5120/20679-3525.

[35] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst: a cloudsim-based visual modeller for analysing cloud
computing environments and applications,” in 2010 24th IEEE International Conference on Advanced Information Networking and

Applications, 2010, pp. 446–452, doi: 10.1109/AINA.2010.32.

[36] G. Ramadhan, T. W. Purboyo, R. Latuconsina, and A. R. Robin, “Experimental model for load balancing in cloud computing using
throttled algorithm,” International Journal of Applied Engineering Research, vol. 13, no. 2, pp. 1139–1143, 2018.

[37] M. Xu, W. Tian, and R. Buyya, “A survey on load balancing algorithms for virtual machines placement in cloud computing,”

Concurrency and Computation: Practice and Experience, vol. 29, no. 12, Jun. 2017, Art. no. e4123, doi: 10.1002/cpe.4123.
[38] V. Sakthivelmurugan, R. Vimala, and K. R. Aravind Britto, “Magnum opus of an efficient hospitality technique for load balancing

in cloud environment,” Concurrency and Computation: Practice and Experience, vol. 31, no. 14, Jul. 2019, doi: 10.1002/cpe.5078.

[39] G. J. Mirobi and L. Arockiam, “Dynamic load balancing approach for minimizing the response time using an enhanced throttled
load balancer in cloud computing,” in 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), Nov.

2019, pp. 570–575, doi: 10.1109/ICSSIT46314.2019.8987845.
[40] S. M. Shetty and S. Shetty, “Analysis of load balancing in cloud data centers,” Journal of Ambient Intelligence and Humanized

Computing, Jan. 2019, doi: 10.1007/s12652-018-1106-7.

[41] S. Ghosh and C. Banerjee, “Priority based modified throttled algorithm in cloud computing,” in 2016 International Conference on
Inventive Computation Technologies (ICICT), Aug. 2016, vol. 2016, pp. 1–6, doi: 10.1109/INVENTIVE.2016.7830175.

[42] S. G. Domanal and G. R. M. Reddy, “Load balancing in cloud computingusing modified throttled algorithm,” in 2013 IEEE

International Conference on Cloud Computing in Emerging Markets (CCEM), Oct. 2013, pp. 1–5, doi:
10.1109/CCEM.2013.6684434.

[43] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “CloudSim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of resource provisioning algorithms,” Software: Practice and Experience, vol. 41,
no. 1, pp. 23–50, Jan. 2011, doi: 10.1002/spe.995.

[44] R. N. Calheiros, R. Ranjan, C. A. F. De Rose, and R. Buyya, “CloudSim: a novel framework for modeling and simulation of cloud

computing infrastructures and services,” Mar. 2009, [Online]. Available: http://arxiv.org/abs/0903.2525.
[45] S. P. Singh, A. Sharma, and R. Kumar, “Analysis of load balancing algorithms using cloud analyst,” International Journal of Grid

and Distributed Computing, vol. 9, no. 9, pp. 11–24, Sep. 2016, doi: 10.14257/ijgdc.2016.9.9.02.

[46] M. Kumar and S. C. Sharma, “Dynamic load balancing algorithm for balancing the workload among virtual machine in cloud
computing,” Procedia Computer Science, vol. 115, pp. 322–329, 2017, doi: 10.1016/j.procs.2017.09.141.

[47] N. A. Kofahi, T. Alsmadi, M. Barhoush, and M. A. Al-Shannaq, “Priority-based and optimized data center selection in cloud

computing,” Arabian Journal for Science and Engineering, vol. 44, no. 11, pp. 9275–9290, Nov. 2019, doi: 10.1007/s13369-019-
03845-3.

