576 research outputs found

    Goitre and Iodine Deficiency in Europe

    Get PDF
    The prevalence of endemic iodine-deficiency goitre in Europe has been reduced in many areas by the introduction of iodination programmes. Recent reports, however, show that goitre remains a significant problem and that its prevalence has not decreased in a number of European countries. Hetzel1 has pointed out that the high global prevalence of iodine-deficiency disorders could be eradicated within 5-10 years by introduction of an iodised salt programme. The current World Health Organisation recommendations for iodine intake are between 150 and 300 ÎĽg/da

    First-principles calculations of the structural, electronic, vibrational and magnetic properties of C_{60} and C_{48}N_{12}: a comparative study

    Get PDF
    In this work, we perform first-principles calculations of the structural, electronic, vibrational and magnetic properties of a novel C48N12{\rm C}_{48}{\rm N}_{12} azafullerene. Full geometrical optimization shows that C48N12{\rm C}_{48}{\rm N}_{12} is characterized by several distinguishing features: only one nitrogen atom per pentagon, two nitrogen atoms preferentially sitting in one hexagon, S6{\rm S}_{6} symmetry, 6 unique nitrogen-carbon and 9 unique carbon-carbon bond lengths. The highest occupied molecular orbital of C48N12{\rm C}_{48}{\rm N}_{12} is a doubly degenerate level of aga_{g} symmetry and its lowest unoccupied molecular orbital is a nondegenerate level of aua_{u} symmetry. Vibrational frequency analysis predicts that C48N12{\rm C}_{48}{\rm N}_{12} has in total 116 vibrational modes: 58 infrared-active and 58 Raman-active modes. C48N12{\rm C}_{48}{\rm N}_{12} is also characterized by 8 13C^{13}{\rm C} and 2 15N^{15}{\rm N} NMR spectral signals. Compared to C60{\rm C}_{60}, C48N12{\rm C}_{48}{\rm N}_{12} shows an enhanced third-order optical nonlinearities which implies potential applications in optical limiting and photonics.Comment: a long version of our manuscript submitted to J.Chem.Phy

    Interfacial charge transfer in nanoscale polymer transistors

    Get PDF
    Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors. While the details remain elusive in many systems, this charge transfer has been inferred in a number of photoemission experiments. We present electronic transport measurements in very short channel (L<100L < 100 nm) transistors made from poly(3-hexylthiophene) (P3HT). As channel length is reduced, the evolution of the contact resistance and the zero-gate-voltage conductance are consistent with such charge transfer. Short channel conduction in devices with Pt contacts is greatly enhanced compared to analogous devices with Au contacts, consistent with charge transfer expectations. Alternating current scanning tunneling microscopy (ACSTM) provides further evidence that holes are transferred from Pt into P3HT, while much less charge transfer takes place at the Au/P3HT interface.Comment: 19 preprint pages, 6 figure

    Lifetime of d-holes at Cu surfaces: Theory and experiment

    Get PDF
    We have investigated the hole dynamics at copper surfaces by high-resolution angle-resolved photoemission experiments and many-body quasiparticle GW calculations. Large deviations from a free-electron-like picture are observed both in the magnitude and the energy dependence of the lifetimes, with a clear indication that holes exhibit longer lifetimes than electrons with the same excitation energy. Our calculations show that the small overlap of d- and sp-states below the Fermi level is responsible for the observed enhancement. Although there is qualitative good agreement of our theoretical predictions and the measured lifetimes, there still exist some discrepancies pointing to the need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.

    On the interpretation of spin-polarized electron energy loss spectra

    Full text link
    We study the origin of the structure in the spin-polarized electron energy loss spectroscopy (SPEELS) spectra of ferromagnetic crystals. Our study is based on a 3d tight-binding Fe model, with constant onsite Coulomb repulsion U between electrons of opposite spin. We find it is not the total density of Stoner states as a function of energy loss which determines the response of the system in the Stoner region, as usually thought, but the densities of Stoner states for only a few interband transitions. Which transitions are important depends ultimately on how strongly umklapp processes couple the corresponding bands. This allows us to show, in particular, that the Stoner peak in SPEELS spectra does not necessarily indicate the value of the exchange splitting energy. Thus, the common assumption that this peak allows us to estimate the magnetic moment through its correlation with exchange splitting should be reconsidered, both in bulk and surface studies. Furthermore, we are able to show that the above mechanism is one of the main causes for the typical broadness of experimental spectra. Finally, our model predicts that optical spin waves should be excited in SPEELS experiments.Comment: 11 pages, 7 eps figures, REVTeX fil

    Raman scattering in C_{60} and C_{48}N_{12} aza-fullerene: First-principles study

    Full text link
    We carry out large scale {\sl ab initio} calculations of Raman scattering activities and Raman-active frequencies (RAFs) in C48N12{\rm C}_{48}{\rm N}_{12} aza-fullerene. The results are compared with those of C60{\rm C}_{60}. Twenty-nine non-degenerate polarized and 29 doubly-degenerate unpolarized RAFs are predicted for C48N12{\rm C}_{48}{\rm N}_{12}. The RAF of the strongest Raman signal in the low- and high-frequency regions and the lowest and highest RAFs for C48N12{\rm C}_{48}{\rm N}_{12} are almost the same as those of C60{\rm C}_{60}. The study of C60{\rm C}_{60} reveals the importance of electron correlations and the choice of basis sets in the {\sl ab initio} calculations. Our best calculated results for C60{\rm C}_{60} with the B3LYP hybrid density functional theory are in excellent agreement with experiment and demonstrate the desirable efficiency and accuracy of this theory for obtaining quantitative information on the vibrational properties of these molecules.Comment: submitted to Phys.Rev.

    Pion Generalized Dipole Polarizabilities by Virtual Compton Scattering πe→πeγ\pi e \to \pi e\gamma

    Full text link
    We present a calculation of the cross section and the event generator of the reaction πe→πeγ\pi e\to \pi e \gamma. This reaction is sensitive to the pion generalized dipole polarizabilities, namely, the longitudinal electric αL(q2)\alpha_L(q^2), the transverse electric αT(q2)\alpha_T(q^2), and the magnetic β(q2)\beta(q^2) which, in the real-photon limit, reduce to the ordinary electric and magnetic polarizabilities αˉ\bar{\alpha} and βˉ\bar{\beta}, respectively. The calculation of the cross section is done in the framework of chiral perturbation theory at O(p4){\cal O}(p^4). A pion VCS event generator has been written which is ready for implementation in GEANT simulation codes or for independent use.Comment: 33 pages, Revtex, 15 figure

    Pion Dynamics at Finite Temperature

    Full text link
    The pion decay constant and mass are computed at low temperature within Chiral Perturbation Theory to two loops. The effects of the breaking of Lorentz Symmetry by the thermal equilibrium state are discussed. The validity of the Gell-Mann Oakes Renner relation at finite temperature is examined.Comment: 27 pages LaTeX and 7 figures in ps forma

    The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe

    Get PDF
    Phytoplankton periodicity has been fairly regular during the years 1979 to 1982 in Lake Constance. Algal mass growth starts with the vernal onset of stratification; Cryptophyceae and small centric diatoms are the dominant algae of the spring bloom. In June grazing by zooplankton leads to a lsquoclear-water phasersquo dominated by Cryptophyceae. Algal summer growth starts under nutrient-saturated conditions with a dominance of Cryptomonas spp. and Pandorina morum. Depletion of soluble reactive phosphorus is followed by a dominance of pennate and filamentous centric diatoms, which are replaced by Ceratium hirundinella when dissolved silicate becomes depleted. Under calm conditions there is a diverse late-summer plankton dominated by Cyanophyceae and Dinobryon spp.; more turbulent conditions and silicon resupply enable a second summer diatom growth phase in August. The autumnal development leads from a Mougeotia — desmid assemblage to a diatom plankton in late autumn and winter. Inter-lake comparison of algal seasonality includes in ascending order of P-richness Königsee, Attersee, Walensee, Lake Lucerne, Lago Maggiore, Ammersee, Lake Zürich, Lake Geneva, Lake Constance. The oligotrophic lakes have one or two annual maxima of biomass; after the vernal maximum there is a slowly developing summer depression and sometimes a second maximum in autumn. The more eutrophic lakes have an additional maximum in summer. The number of floristically determined successional stages increases with increasing eutrophy, from three in Königsee and Attersee to eight in Lake Geneva and Lake Constance
    • …
    corecore