316 research outputs found

    R/V Helmer Hanssen Cruise No. 2013007 - Part I, University of Tromsø cruise report, Tromsø – Longyearbyen, 08-07-13 to 21-07-13

    Get PDF

    UNIVERSITY OF TROMSØ cruise report Tromsø – Longyearbyen, 01-07-11 to 14-07-11, R/V Helmer Hanssen ; Part 1

    Get PDF

    Report of simulation-assisted monitoring strategies

    Get PDF

    Low temperature heat capacity of severely deformed metallic glass

    Full text link
    The low temperature heat capacity of amorphous materials reveals a low-frequency enhancement (boson peak) of the vibrational density of states, as compared with the Debye law. By measuring the low-temperature heat capacity of a Zr-based bulk metallic glass relative to a crystalline reference state, we show that the heat capacity of the glass is strongly enhanced after severe plastic deformation by high-pressure torsion, while subsequent thermal annealing at elevated temperatures leads to a significant reduction. The detailed analysis of corresponding molecular dynamics simulations of an amorphous Zr-Cu glass shows that the change in heat capacity is primarily due to enhanced low-frequency modes within the shear band region.Comment: 5 pages, 2 figure

    Norwegian margin outer shelf cracking: a consequence of climate-induced gas hydrate dissociation?

    Get PDF
    A series of en echelon cracks run nearly parallel to the outer shelf edge of the mid-Norwegian margin. The features can be followed in a *60-km-long and *5-km-wide zone in which up to 10-m-deep cracks developed in the seabed at 400–550 m water depth. The time of the seabed cracking has been dated to 7350 14C years BP (8180 cal years BP), which corresponds with the main Storegga Slide event (8100 ± 250 cal. years BP). Reflection seismic data suggest that the cracks do not appear to result from deep-seated faults, but it cannot be ruled out completely that tension crevices were created in relation to past movements on the headwall of the Storegga slide. The cracking zone corresponds well to the zone where the base of the hydrate stability zone (BHSZ) outcrops. Evidence of fluid release in the BHSZ outcrop zone comes from an extensive pockmark field. We suggest that post-glacial ocean warming triggered the dissociation of gas hydrates while the interplay between dissociation, overpressure, and sediment fracturing on the outer shelf remains to be understood.publishedVersio

    Thermogenic methane injection via bubble transport into the upper Arctic Ocean from the hydrate-charged Vestnesa Ridge, Svalbard

    Get PDF
    We use new gas-hydrate geochemistry analyses, echosounder data, and three-dimensional P-Cable seismic data to study a gas-hydrate and free-gas system in 1200 m water depth at the Vestnesa Ridge offshore NW Svalbard. Geochemical measurements of gas from hydrates collected at the ridge revealed a thermogenic source. The presence of thermogenic gas and temperatures of similar to 3.3 degrees C result in a shallow top of the hydrate stability zone (THSZ) at similar to 340 m below sea level (mbsl). Therefore, hydrate-skinned gas bubbles, which inhibit gas-dissolution processes, are thermodynamically stable to this shallow water depth. This was confirmed by hydroacoustic observations of flares in 2010 and 2012 reaching water depths between 210 and 480 mbsl. At the seafloor, bubbles are released from acoustically transparent zones in the seismic data, which we interpret as regions where free gas is migrating through the hydrate stability zone (HSZ). These intrusions result in vertical variations in the base of the HSZ (BHSZ) of up to similar to 150 m, possibly making the shallow hydrate reservoir more susceptible to warming. Such Arctic gas-hydrate and free-gas systems are important because of their potential role in climate change and in fueling marine life, but remain largely understudied due to limited data coverage in seasonally ice-covered Arctic environments

    Local Seismicity and Sediment Deformation in the West Svalbard Margin: Implications of Neotectonics for Seafloor Seepage

    Get PDF
    In the Fram Strait, mid-ocean ridge spreading is represented by the ultra-slow system of the Molloy Ridge, the Molloy Transform Fault and the Knipovich Ridge. Sediments on oceanic and continental crust are gas charged and there are several locations with documented seafloor seepage. Sedimentary faulting shows recent stress release in the sub-surface, but the drivers of stress change and its influence on fluid flow are not entirely understood. We present here the results of an 11-month-long ocean bottom seismometer survey conducted over the highly faulted sediment drift northwards from the Knipovich Ridge to monitor seismicity and infer the regional state of stress. We obtain a detailed earthquake catalog that improves the spatial resolution of mid-ocean ridge seismicity compared with published data. Seismicity at the Molloy Transform Fault is occurring southwards from the bathymetric imprint of the fault, as supported by a seismic profile. Earthquakes in the northern termination of the Knipovich Ridge extend eastwards from the ridge valley, which together with syn-rift faulting identified in seismic reflection data, suggests that a portion of the currently active spreading center is buried under sediments away from the bathymetric expression of the rift valley. This hints at the direct link between crustal rifting processes and faulting in shallow sediments. Two earthquakes occur close to the seepage system of the Vestnesa Ridge further north from the network. We suggest that deeper rift structures, reactivated by gravity and/or post-glacial subsidence, may lead to accommodation of stress through shallow extensional faults, therefore impacting seepage dynamics
    corecore