871 research outputs found

    Solitons in coupled Ablowitz-Ladik chains

    Full text link
    A model of two coupled Ablowitz-Ladik (AL) lattices is introduced. While the system as a whole is not integrable, it admits reduction to the integrable AL model for symmetric states. Stability and evolution of symmetric solitons are studied in detail analytically (by means of a variational approximation) and numerically. It is found that there exists a finite interval of positive values of the coupling constant in which the symmetric soliton is stable, provided that its mass is below a threshold value. Evolution of the unstable symmetric soliton is further studied by means of direct simulations. It is found that the unstable soliton breaks up and decays into radiation, or splits into two counter-propagating asymmetric solitons, or evolves into an asymmetric pulse, depending on the coupling coefficient and the mass of the initial soliton.Comment: To appear in Phys. Lett.

    Instantaneous frequency and amplitude of complex signals based on quaternion Fourier transform

    Get PDF
    The ideas of instantaneous amplitude and phase are well understood for signals with real-valued samples, based on the analytic signal which is a complex signal with one-sided Fourier transform. We extend these ideas to signals with complex-valued samples, using a quaternion-valued equivalent of the analytic signal obtained from a one-sided quaternion Fourier transform which we refer to as the hypercomplex representation of the complex signal. We present the necessary properties of the quaternion Fourier transform, particularly its symmetries in the frequency domain and formulae for convolution and the quaternion Fourier transform of the Hilbert transform. The hypercomplex representation may be interpreted as an ordered pair of complex signals or as a quaternion signal. We discuss its derivation and properties and show that its quaternion Fourier transform is one-sided. It is shown how to derive from the hypercomplex representation a complex envelope and a phase. A classical result in the case of real signals is that an amplitude modulated signal may be analysed into its envelope and carrier using the analytic signal provided that the modulating signal has frequency content not overlapping with that of the carrier. We show that this idea extends to the complex case, provided that the complex signal modulates an orthonormal complex exponential. Orthonormal complex modulation can be represented mathematically by a polar representation of quaternions previously derived by the authors. As in the classical case, there is a restriction of non-overlapping frequency content between the modulating complex signal and the orthonormal complex exponential. We show that, under these conditions, modulation in the time domain is equivalent to a frequency shift in the quaternion Fourier domain. Examples are presented to demonstrate these concepts

    Characterization of polycyclic aromatic compounds in historically contaminated soil by targeted and non-targeted chemical analysis combined with in vitro bioassay

    Get PDF
    Soil samples from a contaminated site in Sweden were analyzed to identify the presence of 78 polycyclic aromatic compounds (PACs) using gas chromatography coupled with mass spectrometry (GC-MS). The target analysis revealed large contributions not only from polycyclic aromatic hydrocarbons (PAHs), but also from alkylated- and oxygenated-PAHs (alkyl- and oxy-PAHs, respectively), and N-heterocyclics (NPACs). PAC profiles indicated primarily pyrogenic sources, although contribution of petrogenic sources was also observed in one sample as indicated by a high ratio of alkylated naphthalene compared to naphthalene. The aryl hydrocarbon receptor (AhR)-activity of the soil extracts was assessed using the H4IIe-pGudluc 1.1 cells bioassay. When compared with the calculated total AhR-activity of the PACs in the target list, 35-97% of the observed bioassay activity could be explained by 62 PACs with relative potency factors (REPs). The samples were further screened using GC coupled with OrbitrapTM high resolution MS (GC-HRMS) to investigate the presence of other PACs that could potentially contribute to the AhR-activity of the extracts. 114 unique candidate compounds were tentatively identified and divided into four groups based on their AhR-activity and environmental occurrence. Twelve substances satisfied all the criteria, and these compounds are suggested to be included in regular screening in future studies, although their identities were not confirmed by standards in this study. High unexplained bio-TEQ fractions in three of the samples may be explained by tentatively identified compounds (n = 35) with high potential of being toxic. This study demonstrates the benefit of combining targeted and non-targeted chemical analysis with bioassay analysis to assess the diversity and effects of PACs at contaminated sites. The applied prioritization strategy revealed a number of tentatively identified compounds, which likely contributed to the overall bioactivity of the soil extracts

    The blunted effect of glucose-dependent insulinotropic polypeptide in subcutaneous abdominal adipose tissue in obese subjects is partly reversed by weight loss

    Get PDF
    BACKGROUND: Glucose-dependent insulinotropic polypeptide (GIP) appears to have impaired effect on subcutaneous abdominal adipose tissue metabolism in obese subjects. The aim of the present study was to examine whether weight loss may reverse the impaired effect of GIP on subcutaneous abdominal adipose tissue in obese subjects. METHODS: Five obese males participated in a 12-week weight loss program, which consisted of caloric restriction (800 Cal day(−)(1)) followed by 4 weeks of weight-maintenance diet. Before and after weight loss, subcutaneous adipose tissue lipid metabolism was studied by conducting regional measurements of arterio-venous plasma concentrations of metabolites and blood flow (adipose tissue blood flow, ATBF) across a segment of the abdominal adipose tissue in the fasting state and during GIP infusion (1.5 pmol kg(−)(1 )min(−)(1)) in combination with a hyperinsulinemic–hyperglycemic clamp. RESULTS: After weight loss (7.5±0.8 kg), glucose tolerance and insulin sensitivity increased significantly as expected. No significant differences were seen in basal ATBF before (1.3±0.4 ml min(−1) 100 g tissue(−1)) and after weight loss (2.1±0.4 ml min(−1) 100 g tissue)(−1); however, a tendency to increase was seen. After weight loss, GIP infusion increased ATBF significantly (3.2±0.1 ml min(−1) 100 g tissue(−1)) whereas there was no increase before weight loss. Triacylglycerol (TAG) uptake did not change after weight loss. Baseline free fatty acid (FFA) and glycerol output increased significantly after weight loss, P<0.001. During the clamp period, FFA and glycerol output declined significantly, P<0.05, with no differences before and after weight loss. Weight loss increased glucose uptake and decreased FFA/glycerol ratio during the clamp period, P<0.05. CONCLUSIONS: In obese subjects, weight loss, induced by calorie restriction, improves the blunted effect of GIP on subcutaneous abdominal adipose tissue metabolism

    End-to-end Deep Learning of Optical Fiber Communications

    Get PDF
    In this paper, we implement an optical fiber communication system as an end-to-end deep neural network, including the complete chain of transmitter, channel model, and receiver. This approach enables the optimization of the transceiver in a single end-to-end process. We illustrate the benefits of this method by applying it to intensity modulation/direct detection (IM/DD) systems and show that we can achieve bit error rates below the 6.7\% hard-decision forward error correction (HD-FEC) threshold. We model all componentry of the transmitter and receiver, as well as the fiber channel, and apply deep learning to find transmitter and receiver configurations minimizing the symbol error rate. We propose and verify in simulations a training method that yields robust and flexible transceivers that allow---without reconfiguration---reliable transmission over a large range of link dispersions. The results from end-to-end deep learning are successfully verified for the first time in an experiment. In particular, we achieve information rates of 42\,Gb/s below the HD-FEC threshold at distances beyond 40\,km. We find that our results outperform conventional IM/DD solutions based on 2 and 4 level pulse amplitude modulation (PAM2/PAM4) with feedforward equalization (FFE) at the receiver. Our study is the first step towards end-to-end deep learning-based optimization of optical fiber communication systems.Comment: submitted to IEEE/OSA Journal of Lightwave Technolog
    • …
    corecore