20 research outputs found

    High‐Purity Er3_{3}N@C80_{80} Films: Morphology, Spectroscopic Characterization, and Thermal Stability

    Get PDF
    Films comprising the endohedral fullerene Er3N@C80 are deposited onto highly oriented pyrolytic graphite (HOPG) substrates in high purity enabled by performing mass-selected low-energy deposition from a cation beam. In the initial stage, the growth on HOPG is dominated by spontaneous nucleation of small 2D islands both on intact terraces as well as the step edges. The island growth exhibits strong differences from lms comprising other fullerenes grown by the same method. This behavior can be explained by the surface-diffusion-mediated nucleation model presented in previous work: Dominant components in the behavioural differences are a high intercage dispersion interaction and a lower kinetic energy of cages migrating on the surface in comparison with previously deposited materials. When annealed, the lms undergo several competing processes: A small fraction desorbs in the temperature range 700–800 K, another fraction forms covalent intercage bonds instead of the previous purely dispersive bonding mode, and a third fraction probably decomposes to small fragments

    Influence of Dispersion Interactions on the Thermal Desorption of Nonplanar Polycyclic Aromatic Hydrocarbons on HOPG

    Get PDF
    A combination of low energy ion beam deposition and mass resolved thermal desorption spectroscopy is applied to analyze the binding behavior of two nonplanar polycyclic aromatic hydrocarbons (PAHs) to highly oriented pyrolytic graphite (HOPG) surfaces—also concerning their lateral dispersion interactions. In particular, the fullerene precursor C60H30 (FPC) and rubrene C42H28 are studied. Due to their smaller contact areas, both molecules exhibit significantly weaker binding energies to the HOPG surface compared to planar PAHs of similar size: C60H30 is bound to the surface by 3.04 eV, which is 0.6 eV lower than for a fully planar homologue. For rubrene, an isolated molecule–substrate binding energy of 1.59 eV is found, which is about 1 eV less than that of the corresponding planar homologue hexabenzocoronene C42H18. In contrast to FPC, rubrene shows a significant (intermolecular) lateral dispersion contribution to the binding energy as the submonolayer coverage increases

    C58 on Au(111): a scanning tunneling microscopy study

    Get PDF
    C58 fullerenes were adsorbed onto room temperature Au(111) surface by low-energy (~6 eV) cluster ion beam deposition under ultrahigh vacuum conditions. The topographic and electronic properties of the deposits were monitored by means of scanning tunnelling microscopy (STM at 4.2 K). Topographic images reveal that at low coverages fullerene cages are pinned by point dislocation defects on the herringbone reconstructed gold terraces (as well as by step edges). At intermediate coverages, pinned monomers, act as nucleation centres for the formation of oligomeric C58 chains and 2D islands. At the largest coverages studied, the surface becomes covered by 3D interlinked C58 cages. STM topographic images of pinned single adsorbates are essentially featureless. The corresponding local densities of states are consistent with strong cage-substrate interactions. Topographic images of [C58]n oligomers show a stripe-like intensity pattern oriented perpendicular to the axis connecting the cage centers. This striped pattern becomes even more pronounced in maps of the local density of states. As supported by density functional theory, DFT calculations, and also by analogous STM images previously obtained for C60 polymers (M. Nakaya et al., J. Nanosci. Nanotechnol. 11, 2829 (2011)), we conclude that these striped orbital patterns are a fingerprint of covalent intercage bonds. For thick C58 films we have derived a band gap of 1.2 eV from scanning tunnelling spectroscopy data, STS, confirming that the outermost C58 layer behaves as a wide band semiconductor

    Increase of the mean inner Coulomb potential in Au clusters induced by surface tension and its implication for electron scattering

    Full text link
    Electron holography in a transmission electron microscope was applied to measure the phase shift induced by Au clusters as a function of the cluster size. Large phase shifts Df observed for small Au clusters cannot be described by the well-known equation Df=C_E V_0 t (C_E: interaction constant, V_0: mean inner Coulomb potential (MIP) of bulk gold, t: cluster thickness). The rapid increase of the Au MIP with decreasing cluster size derived from Df, can be explained by the compressive strain of surface atoms in the cluster

    Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56 NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56 NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94/HLADR phenotypic profile proved to be a useful surrogate marker for NK-cell clonality.This work has been partially supported by the following grants: FIS 02/1244-FEDER, DTS 15/00119-FEDER, RTICC RD06/0020/0035-FEDER and RTICC RD12/0036/0048-FEDER from the Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain; SA103/03 and SA079U14 from the Consejería de Educación, Junta de Castilla y León, Valladolid, Spain. The research activities of the EuroFlow Consortium were supported by the European Commission (grant STREP EU-FP6, LSHB-CT-2006–018708, entitled ‘Flow cytometry for fast and sensitive diagnosis and follow-up of hematological malignancies’).Peer Reviewe

    Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality

    Get PDF
    [EN]Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56(low) NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56(low) NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94(hi)/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality.This work has been partially supported by the following grants: FIS 02/1244-FEDER, DTS 15/00119-FEDER, RTICC RD06/0020/0035-FEDER and RTICC RD12/0036/0048-FEDER from the Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain; SA103/03 and SA079U14 from the Consejería de Educación, Junta de Castilla y León, Valladolid, Spain. The research activities of the EuroFlow Consortium were supported by the European Commission (grant STREP EU-FP6, LSHB-CT-2006–018708, entitled ‘Flow cytometry for fast and sensitive diagnosis and follow-up of hematological malignancies’)

    N 2

    No full text

    Chemisorptive Exoemission Induced by Vibrationally Excited N 2

    No full text

    CO OXIDATION ON Ag(110): SURFACE RECONSTRUCTIONS CONTRA SUBSURFACE OXYGEN

    No full text
    Transient CO2 formation has been studied under "quasi-steady-state" measuring conditions by means of surface titrations. By this method the reactivity of the surface could be sampled as a function of time, thereby following the formation of the surface reconstruction induced by oxygen. The reactivity of the surface towards CO oxidation was reduced in the course of the developing surface reconstruction. A possible influence of subsurface oxygen on the CO2 formation rates can be excluded
    corecore