280 research outputs found
FinDer v.2: Improved real-time ground-motion predictions for M2âM9 with seismic finite-source characterization
Recent studies suggest that small and large earthquakes nucleate similarly, and that they often have indistinguishable seismic waveform onsets. The characterization of earthquakes in real time, such as for earthquake early warning, therefore requires a flexible modeling approach that allows a small earthquake to become large as fault rupture evolves over time. Here, we present a modeling approach that generates a set of output parameters and uncertainty estimates that are consistent with both small/moderate (â€M6.5) and large earthquakes (>M6.5) as is required for a robust parameter interpretation and shaking forecast. Our approach treats earthquakes over the entire range of magnitudes (>M2) as finite line-source ruptures, with the dimensions of small earthquakes being very small (<100 m) and those of large earthquakes exceeding several tens to hundreds of kilometres in length. The extent of the assumed line source is estimated from the level and distribution of high-frequency peak acceleration amplitudes observed in a local seismic network. High-frequency motions are well suited for this approach, because they are mainly controlled by the distance to the rupturing fault. Observed ground-motion patterns are compared with theoretical templates modeled from empirical ground-motion prediction equations to determine the best line source and uncertainties. Our algorithm extends earlier work by Böse et al. for large finite-fault ruptures. This paper gives a detailed summary of the new algorithm and its offline performance for the 2016 M7.0 Kumamoto, Japan and 2014 M6.0 South Napa, California earthquakes, as well as its performance for about 100 real-time detected local earthquakes (2.2 †M †5.1) in California. For most events, both the rupture length and the strike are well constrained within a few seconds (<10 s) of the event origin. In large earthquakes, this could allow for providing warnings of up to several tens of seconds. The algorithm could also be useful for resolving fault plane ambiguities of focal mechanisms and identification of rupturing faults for earthquakes as small as M2.5
Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique
BACKGROUND: Congenital heart defects are the leading non-infectious cause of death in children. Genetic studies in the mouse have been crucial to uncover new genes and signaling pathways associated with heart development and congenital heart disease. The identification of murine models of congenital cardiac malformations in high-throughput mutagenesis screens and in gene-targeted models is hindered by the opacity of the mouse embryo. RESULTS: We developed and optimized a novel method for high-throughput multi-embryo magnetic resonance imaging (MRI). Using this approach we identified cardiac malformations in phosphatidylserine receptor (Ptdsr) deficient embryos. These included ventricular septal defects, double-outlet right ventricle, and hypoplasia of the pulmonary artery and thymus. These results indicate that Ptdsr plays a key role in cardiac development. CONCLUSIONS: Our novel multi-embryo MRI technique enables high-throughput identification of murine models for human congenital cardiopulmonary malformations at high spatial resolution. The technique can be easily adapted for mouse mutagenesis screens and, thus provides an important new tool for identifying new mouse models for human congenital heart diseases
The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal
BACKGROUND: Phagocytosis of apoptotic cells is fundamental to animal development, immune function and cellular homeostasis. The phosphatidylserine receptor (Ptdsr) on phagocytes has been implicated in the recognition and engulfment of apoptotic cells and in anti-inflammatory signaling. To determine the biological function of the phosphatidylserine receptor in vivo, we inactivated the Ptdsr gene in the mouse. RESULTS: Ablation of Ptdsr function in mice causes perinatal lethality, growth retardation and a delay in terminal differentiation of the kidney, intestine, liver and lungs during embryogenesis. Moreover, eye development can be severely disturbed, ranging from defects in retinal differentiation to complete unilateral or bilateral absence of eyes. Ptdsr (-/-) mice with anophthalmia develop novel lesions, with induction of ectopic retinal-pigmented epithelium in nasal cavities. A comprehensive investigation of apoptotic cell clearance in vivo and in vitro demonstrated that engulfment of apoptotic cells was normal in Ptdsr knockout mice, but Ptdsr-deficient macrophages were impaired in pro- and anti-inflammatory cytokine signaling after stimulation with apoptotic cells or with lipopolysaccharide. CONCLUSION: Ptdsr is essential for the development and differentiation of multiple organs during embryogenesis but not for apoptotic cell removal. Ptdsr may thus have a novel, unexpected developmental function as an important differentiation-promoting gene. Moreover, Ptdsr is not required for apoptotic cell clearance by macrophages but seems to be necessary for the regulation of macrophage cytokine responses. These results clearly contradict the current view that the phosphatidylserine receptor primarily functions in apoptotic cell clearance
Changes in wave climate over the northwest European shelf seas during the last 12,000 years
Because of the depth attenuation of wave orbital velocity, wave-induced bed shear stress is much more sensitive to changes in total water depth than tidal-induced bed shear stress. The ratio between wave- and tidal-induced bed shear stress in many shelf sea regions has varied considerably over the recent geological past because of combined eustatic changes in sea level and isostatic adjustment. In order to capture the high-frequency nature of wind events, a two-dimensional spectral wave model is here applied at high temporal resolution to time slices from 12 ka BP to present using paleobathymetries of the NW European shelf seas. By contrasting paleowave climates and bed shear stress distributions with present-day conditions, the model results demonstrate that, in regions of the shelf seas that remained wet continuously over the last 12,000 years, annual root-mean-square (rms) and peak wave heights increased from 12 ka BP to present. This increase in wave height was accompanied by a large reduction in the annual rms wave- induced bed shear stress, primarily caused by a reduction in the magnitude of wave orbital velocity penetrating to the bed for increasing relative sea level. In regions of the shelf seas which remained wet over the last 12,000 years, the annual mean ratio of wave- to (M-2) tidal-induced bed shear stress decreased from 1 (at 12 ka BP) to its present-day value of 0.5. Therefore compared to present- day conditions, waves had a more important contribution to large-scale sediment transport processes in the Celtic Sea and the northwestern North Sea at 12 ka BP
The {\eta}'-carbon potential at low meson momenta
The production of mesons in coincidence with forward-going
protons has been studied in photon-induced reactions on C and on a
liquid hydrogen (LH) target for incoming photon energies of 1.3-2.6 GeV at
the electron accelerator ELSA. The mesons have been identified
via the decay
registered with the CBELSA/TAPS detector system. Coincident protons have been
identified in the MiniTAPS BaF array at polar angles of . Under these kinematic constraints the
mesons are produced with relatively low kinetic energy (
150 MeV) since the coincident protons take over most of the momentum of the
incident-photon beam. For the C-target this allows the determination of the
real part of the -carbon potential at low meson momenta by
comparing with collision model calculations of the kinetic energy
distribution and excitation function. Fitting the latter data for
mesons going backwards in the center-of-mass system yields a potential depth of
V = (44 16(stat)15(syst)) MeV, consistent with earlier
determinations of the potential depth in inclusive measurements for average
momenta of 1.1 GeV/. Within the experimental
uncertainties, there is no indication of a momentum dependence of the
-carbon potential. The LH data, taken as a reference to check
the data analysis and the model calculations, provide differential and integral
cross sections in good agreement with previous results for
photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with
arXiv:1608.0607
Experimental constraints on the -nucleus real potential
In a search for mesic states, the production of -mesons in
coincidence with forward going protons has been studied in photon induced
reactions on C for incident photon energies of 1250 - 3100 MeV. The
pairs from decays of bound or quasi-free -mesons have
been measured with the CBELSA/TAPS detector system in coincidence with protons
registered in the MiniTAPS forward array. Structures in the total energy
distribution of the pairs, which would indicate the population
and decay of bound B states, are not observed. The
cross section of 0.3 nb/MeV/sr observed in the bound state energy regime
between -100 and 0 MeV may be accounted for by yield leaking into the bound
state regime because of the large in-medium width of the -meson. A
comparison of the measured total energy distribution with calculations suggests
the real part of the B potential to be small and only
weakly attractive with 35(stat) 20(syst) MeV
in contrast to some theoretical predictions of attractive potentials with a
depth of 100 - 150 MeV.Comment: 13 pages, 8 figure
FinDer v.2: Improved real-time ground-motion predictions for M2âM9 with seismic finite-source characterization
Recent studies suggest that small and large earthquakes nucleate similarly, and that they often have indistinguishable seismic waveform onsets. The characterization of earthquakes in real time, such as for earthquake early warning, therefore requires a flexible modeling approach that allows a small earthquake to become large as fault rupture evolves over time. Here, we present a modeling approach that generates a set of output parameters and uncertainty estimates that are consistent with both small/moderate (â€M6.5) and large earthquakes (>M6.5) as is required for a robust parameter interpretation and shaking forecast. Our approach treats earthquakes over the entire range of magnitudes (>M2) as finite line-source ruptures, with the dimensions of small earthquakes being very small (<100 m) and those of large earthquakes exceeding several tens to hundreds of kilometres in length. The extent of the assumed line source is estimated from the level and distribution of high-frequency peak acceleration amplitudes observed in a local seismic network. High-frequency motions are well suited for this approach, because they are mainly controlled by the distance to the rupturing fault. Observed ground-motion patterns are compared with theoretical templates modeled from empirical ground-motion prediction equations to determine the best line source and uncertainties. Our algorithm extends earlier work by Böse et al. for large finite-fault ruptures. This paper gives a detailed summary of the new algorithm and its offline performance for the 2016 M7.0 Kumamoto, Japan and 2014 M6.0 South Napa, California earthquakes, as well as its performance for about 100 real-time detected local earthquakes (2.2 †M †5.1) in California. For most events, both the rupture length and the strike are well constrained within a few seconds (<10 s) of the event origin. In large earthquakes, this could allow for providing warnings of up to several tens of seconds. The algorithm could also be useful for resolving fault plane ambiguities of focal mechanisms and identification of rupturing faults for earthquakes as small as M2.5
Photoproduction of eta mesons from the neutron: cross sections and double polarization observable E
Photoproduction of mesons from neutrons} \abstract{Results from
measurements of the photoproduction of mesons from quasifree protons and
neutrons are summarized. The experiments were performed with the CBELSA/TAPS
detector at the electron accelerator ELSA in Bonn using the
decay. A liquid deuterium target was used for the
measurement of total cross sections and angular distributions. The results
confirm earlier measurements from Bonn and the MAMI facility in Mainz about the
existence of a narrow structure in the excitation function of . The current angular distributions show a forward-backward
asymmetry, which was previously not seen, but was predicted by model
calculations including an additional narrow state. Furthermore, data
obtained with a longitudinally polarized, deuterated butanol target and a
circularly polarized photon beam were analyzed to determine the double
polarization observable . Both data sets together were also used to extract
the helicity dependent cross sections and . The
narrow structure in the excitation function of
appears associated with the helicity-1/2 component of the reaction
First measurement of the helicity asymmetry for in the resonance region
The first measurement of the helicity dependence of the photoproduction cross
section of single neutral pions off protons is reported for photon energies
from 600 to 2300\,MeV, covering nearly the full solid angle. The data are
compared to predictions from the SAID, MAID, and BnGa partial wave analyses.
Strikingly large differences between data and predictions are observed which
are traced to differences in the helicity amplitudes of well known and
established resonances. Precise values for the helicity amplitudes of several
resonances are reported
The polarization observables T, P, and H and their impact on multipoles
Data on the polarization observables T, P, and H for the reaction are reported. Compared to earlier data from other experiments, our
data are more precise and extend the covered range in energy and angle
substantially. The results were extracted from azimuthal asymmetries measured
using a transversely polarized target and linearly polarized photons. The data
were taken at the Bonn electron stretcher accelerator ELSA with the CBELSA/TAPS
detector. Within the Bonn-Gatchina partial wave analysis, the new polarization
data lead to a significant narrowing of the error band for the multipoles for
neutral-pion photoproduction
- âŠ