57 research outputs found

    Coherence effect in a two-band superconductor: Application to iron pnictides

    Full text link
    From a theoretical point of view, we propose an experimental method to determine the pairing symmetry of iron pnictides. We focus on two kinds of pairing symmetries, s+s_{+-} and s++s_{++}, which are strong candidates for the pairing symmetry of iron pnictides. For each of these two symmetries, we calculate both the density and spin response functions by using the two-band BCS model within the one-loop approximation. As a result, a clear difference is found between the s+s_{+-}- and s++s_{++}-wave states in the temperature dependence of the response functions at nesting vector Q\bf{Q}, which connects the hole and electron Fermi surfaces. We point out that this difference comes from the coherence effect in the two-band superconductor. We suggest that the pairing symmetry could be clarified by observing the temperature dependence of both the density and spin structure factors at the nesting vector Q\bf{Q} in neutron scattering measurements.Comment: 15 pages, 7 figures, 1 tabl

    The crossover from propagating to strongly scattered acoustic modes of glasses observed in densified silica

    Full text link
    Spectroscopic results on low frequency excitations of densified silica are presented and related to characteristic thermal properties of glasses. The end of the longitudinal acoustic branch is marked by a rapid increase of the Brillouin linewidth with the scattering vector. This rapid growth saturates at a crossover frequency Omega_co which nearly coincides with the center of the boson peak. The latter is clearly due to additional optic-like excitations related to nearly rigid SiO_4 librations as indicated by hyper-Raman scattering. Whether the onset of strong scattering is best described by hybridization of acoustic modes with these librations, by their elastic scattering (Rayleigh scattering) on the local excitations, or by soft potentials remains to be settled.Comment: 14 pages, 6 figures, to be published in a special issue of J. Phys. Condens. Matte

    Nitration of the Egg-Allergen Ovalbumin Enhances Protein Allergenicity but Reduces the Risk for Oral Sensitization in a Murine Model of Food Allergy

    Get PDF
    Nitration of proteins on tyrosine residues, which can occur due to polluted air under "summer smog" conditions, has been shown to increase the allergic potential of allergens. Since nitration of tyrosine residues is also observed during inflammatory responses, this modification could directly influence protein immunogenicity and might therefore contribute to food allergy induction. In the current study we have analyzed the impact of protein nitration on sensitization via the oral route.BALB/c mice were immunized intragastrically by feeding untreated ovalbumin (OVA), sham-nitrated ovalbumin (snOVA) or nitrated ovalbumin (nOVA) with or without concomitant acid-suppression. To analyze the impact of the sensitization route, the allergens were also injected intraperitoneally. Animals being fed OVA or snOVA under acid-suppressive medication developed significantly elevated levels of IgE, and increased titers of specific IgG1 and IgG2a antibodies. Interestingly, oral immunizations of nOVA under anti-acid treatment did not result in IgG and IgE formation. In contrast, intraperitoneal immunization induced high levels of OVA specific IgE, which were significantly increased in the group that received nOVA by injection. Furthermore, nOVA triggered significantly enhanced mediator release from RBL cells passively sensitized with sera from allergic mice. Gastric digestion experiments demonstrated protein nitration to interfere with protein stability as nOVA was easily degraded, whereas OVA and snOVA remained stable up to 120 min. Additionally, HPLC-chip-MS/MS analysis showed that one tyrosine residue (Y(107)) being very efficiently nitrated is part of an ovalbumin epitope recognized exclusively after oral sensitization.These data indicated that despite the enhanced triggering capacity in existing allergy, nitration of OVA may be associated with a reduced de novo sensitizing capability via the oral route due to enhanced protein digestibility and/or changes in antibody epitopes

    Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS

    Get PDF
    Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an exome-wide rare variant burden analysis of 363 index cases with familial ALS (FALS). The results revealed an excess of patient variants within TUBA4A, the gene encoding the Tubulin, Alpha 4A protein. Analysis of a further 272 FALS cases and 5,510 internal controls confirmed the overrepresentation as statistically significant and replicable. Functional analyses revealed that TUBA4A mutants destabilize the microtubule network, diminishing its repolymerization capability. These results further emphasize the role of cytoskeletal defects in ALS and demonstrate the power of gene-based rare variant analyses in situations where causal genes cannot be identified through traditional segregation analysis

    X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    Get PDF
    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases

    Ten millennia of hepatitis B virus evolution

    Get PDF
    Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between similar to 10,500 and similar to 400 years ago. We date the most recent common ancestor of all HBV lineages to between similar to 20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for similar to 4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic.Molecular Technology and Informatics for Personalised Medicine and Healt
    corecore