138 research outputs found

    NB-3/Notch1 pathway via Deltex1 promotes neural progenitor cell differentiation into oligodendrocytes

    Get PDF
    Neurons and glia in the vertebrate central nervous system arise in temporally distinct, albeit overlapping, phases. Neurons are generated first followed by astrocytes and oligodendrocytes from common progenitor cells. Increasing evidence indicates that axon-derived signals spatiotemporally modulate oligodendrocyte maturation and myelin formation. Our previous observations demonstrate that F3/contactin is a functional ligand of Notch during oligodendrocyte maturation, revealing the existence of another group of Notch ligands. Here, we establish that NB-3, a member of the F3/contactin family, acts as a novel Notch ligand to participate in oligodendrocyte generation. NB-3 triggers nuclear translocation of the Notch intracellular domain and promotes oligodendrogliogenesis from progenitor cells and differentiation of oligodendrocyte precursor cells via Deltex1. In primary oligodendrocytes, NB-3 increases myelin-associated glycoprotein transcripts. Thus, the NB-3/Notch signaling pathway may prove to be a molecular handle to treat demyelinating diseases. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc

    The Open Anchoring Quest Dataset: Anchored Estimates from 96 Studies on Anchoring Effects

    Get PDF
    People’s estimates are biased toward previously considered numbers (anchoring). We have aggregated all available data from anchoring studies that included at least two anchors into one large dataset. Data were standardized to comprise one estimate per row, coded according to a wide range of variables, and are available for download and analyses online (https://metaanalyses.shinyapps.io/OpAQ/). Because the dataset includes both original and meta-data it allows for fine-grained analyses (e.g., correlations of estimates for different tasks) but also for meta-analyses (e.g., effect sizes for anchoring effects)

    SOCIETY NEWS

    No full text

    Src phosphorylation of Alix/AIP1 modulates its interaction with binding partners and antagonizes its activities

    No full text
    Alix/AIP1 is an adaptor protein involved in regulating the function of receptor and cytoskeleton-associated tyrosine kinases. Here, we investigated its interaction with and regulation by Src. Tyr319 of Alix bound the isolated Src homology-2 (SH2) domain and was necessary for interaction with intact Src. A proline-rich region in the C terminus of Alix bound the Src SH3 domain, but this interaction was dependent on the release of the Src SH2 domain from its Src internal ligand either by interaction with Alix Tyr319 or by mutation of Src Tyr527. Src phosphorylated Alix at a C-terminal region rich in tyrosines, an activity that was stimulated by the presence of the Alix binding partner SETA/CIN85. Phosphorylation of Alix by Src caused it to translocate from the membrane and cytoskeleton to the cytoplasm and reduced its interaction with binding partners SETA/CIN85, epidermal growth factor receptor, and Pyk2. As a consequence of this, Src antagonized the negative regulation of receptor tyrosine kinase internalization and cell adhesion by Alix. We propose a model whereby Src antagonizes the effects of Alix by phosphorylation of its C terminus, leading to the disruption of interactions with target proteins

    The effectiveness of cucurbitacin B in BRCA1 defective breast cancer cells.

    Get PDF
    Cucurbitacin B (CuB) is one of the potential agents for long term anticancer chemoprevention. Cumulative evidences has shown that cucurbitacin B provides potent cellular biological activities such as hepatoprotective, anti-inflammatory and antimicrobial effects, but the precise mechanism of this agent is not clearly understood. We examine the biological effects on cancer cells of cucurbitacin B extracted from a Thai herb, Trichosanthes cucumerina L. The wild type (wt) BRCA1, mutant BRCA1, BRCA1 knocked-down and BRCA1 overexpressed breast cancer cells were treated with the cucurbitacin B and determined for the inhibitory effects on the cell proliferation, migration, invasion, anchorage-independent growth. The gene expressions in the treated cells were analyzed for p21/(Waf1), p27(Kip1) and survivin. Our previous study revealed that loss of BRCA1 expression leads to an increase in survivin expression, which is responsible for a reduction in sensitivity to paclitaxel. In this work, we showed that cucurbitacin B obviously inhibited knocked-down and mutant BRCA1 breast cancer cells rather than the wild type BRCA1 breast cancer cells in regards to the cellular proliferation, migration, invasion and anchorage-independent growth. Furthermore, forcing the cells to overexpress wild type BRCA1 significantly reduced effectiveness of cucurbitacin B on growth inhibition of the endogenous mutant BRCA1 cells. Interestingly, cucurbitacin B promotes the expression of p21/(Waf1) and p27(Kip1) but inhibit the expression of survivin. We suggest that survivin could be an important target of cucurbitacin B in BRCA1 defective breast cancer cells

    Cloning, characterization, and expression of the dapE gene of Escherichia coli.

    No full text
    The dapE gene of Escherichia coli encodes N-succinyl-L-diaminopimelic acid desuccinylase, an enzyme that catalyzes the synthesis of LL-diaminopimelic acid, one of the last steps in the diaminopimelic acid-lysine pathway. The dapE gene region was previously purified from a lambda bacteriophage transducing the neighboring purC gene (J. Parker, J. Bacteriol. 157:712-717, 1984). Various subcloning steps led to the identification of a 2.3-kb fragment that complemented several dapE mutants and allowed more than 400-fold overexpression of N-succinyl-L-diaminopimelic acid desuccinylase. Sequencing of this fragment revealed the presence of two closely linked open reading frames. The second one encodes a 375-residue, 41,129-M(r) polypeptide that was identified as N-succinyl-L-diaminopimelic acid desuccinylase. The first one encodes a 118-residue polypeptide that is not required for diaminopimelic acid biosynthesis, as judged by the wild-type phenotype of a strain in which this gene was disrupted. Expression of the dapE gene was studied by monitoring amylomaltase activity in strains in which the malPQ operon was under the control of various fragments located upstream of the dapE gene. The major promoter governing dapE transcription was found to be located in the adjacent orf118 gene, while a minor promoter allowed the transcription of both orf118 and dapE. Neither of these two promoters is regulated by the lysine concentration in the growth medium

    Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells.

    No full text
    Bipotential oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, which give rise to oligodendrocytes and type-2 astrocytes in cultures of rat optic nerve, are one of the few cell types in which most aspects of proliferation and differentiation can be manipulated in a defined in vitro environment. Previous studies have shown that O-2A progenitors exposed to platelet-derived growth factor (PDGF) divide as migratory bipolar cells a limited number of times, with a cell cycle time of 18 hr, before clonally related progenitors differentiate into nondividing oligodendrocytes with a timing similar to that seen in vivo. In contrast, O-2A progenitors grown in the absence of mitogen do not divide but instead differentiate prematurely into oligodendrocytes, and progenitors exposed to appropriate inducing factors differentiate into type-2 astrocytes. We now have found that O-2A progenitors can be induced to undergo continuous self-renewal in the absence of oligodendrocytic differentiation by exposure to a combination of PDGF and basic fibroblast growth factor (bFGF). With the exception of the inhibition of differentiation, the O-2A progenitors exposed to PDGF and bFGF behaved similarly to those exposed to PDGF alone. In contrast, progenitors exposed to basic bFGF alone were multipolar, had a cell-cycle length of 45 hr, showed little migratory behavior, underwent premature oligodendrocytic differentiation, and did not cease division upon expression of oligodendrocyte marker antigens. Thus, inhibition of differentiation required the presence of both mitogens. Our results demonstrate that PDGF and bFGF act on O-2A progenitors as both inducers of division and as regulators of differentiation that modulate multiple aspects of O-2A progenitor development and, additionally, reveal a previously unrecognized means of regulating self-renewal processes, wherein cooperation between growth factors promotes continuous division in the absence of differentiation

    Control of division and differentiation in oligodendrocyte-type-2 astrocyte progenitor cells

    No full text
    Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells give rise to oligodendrocytes and type-2 astrocytes in cultures of rat optic nerve. These progenitors are one of the few cell types in which most aspects of proliferation and differentiation can be manipulated in a defined in vitro environment. When exposed to platelet-derived growth factor (PDGF), O-2A progenitors divide a limited number of times before clonally related cells differentiate into oligodendrocytes with a timing similar to that seen in vivo. In contrast, O-2A progenitors grown in the absence of mitogen do not divide but differentiate prematurely into oligodendrocytes, and progenitors exposed to appropriate inducing factors differentiate into type-2 astrocytes. O-2A progenitors can become immortalized through at least two different mechanisms. First, when O-2A progenitors are exposed to a combination of PDGF and basic fibroblast growth factor (bFGF) these cells undergo continuous self-renewal in the absence of differentiation. In contrast, the application of bFGF alone is associated with premature oligodendrocytic differentiation of dividing O-2A lineage cells. Thus, cooperation between growth factors can modulate O-2A progenitor self-renewal in a defined chemical environment by eliciting a novel programme of division and differentiation which cannot be predicted from the effects of either factor examined in isolation. A further mechanism which allows prolonged self-renewal in the O-2A lineage is the generation of a stem cell. O-2A progenitors isolated from optic nerves of perinatal rats also have the capacity to give rise to a population of cells called O-2Aadult progenitors, which differ from their perinatal counterparts in many characteristics. Most importantly, O-2Aadult progenitors have a slow cell cycle, divide and differentiate asymmetrically and appear to have the capacity for prolonged self-renewal. Thus, immortalization in this lineage can also be achieved by the generation of a cell with stem cell-like characteristics from a rapidly dividing progenitor population
    corecore