17 research outputs found

    Online publication of court records: circumventing the privacy-transparency trade-off

    Get PDF
    International audienceThe open data movement is leading to the massive publishing of court records online, increasing transparency and accessibility of justice, and to the design of legal technologies building on the wealth of legal data available. However, the sensitive nature of legal decisions also raises important privacy issues. Current practices solve the resulting privacy versus transparency trade-off by combining access control with (manual or semi-manual) text redaction. In this work, we claim that current practices are insufficient for coping with massive access to legal data (restrictive access control policies is detrimental to openness and to utility while text redaction is unable to provide sound privacy protection) and advocate for a in-tegrative approach that could benefit from the latest developments of the privacy-preserving data publishing domain. We present a thorough analysis of the problem and of the current approaches, and propose a straw man multimodal architecture paving the way to a full-fledged privacy-preserving legal data publishing system

    Lightweight Privacy-Preserving Task Assignment in Skill-Aware Crowdsourcing: [Full Version]

    Get PDF
    Crowdsourcing platforms dedicated to work, be it paid or voluntary, essentially consist in intermediating between tasks—sent by requesters—and workers. They are used by a growing number of individuals and organizations, for tasks that are more and more diverse, complex , and that require specific skills, availabilities, experiences, or even devices. On the one hand, these highly detailed task specifications and worker profiles enable high-quality task assignments. On the other hand, detailed worker profiles may disclose a large amount of personal information to the central platform (e.g., personal preferences, availabilities, wealth, occupations), jeopardizing the privacy of workers. In this paper, we propose a lightweight approach to protect workers privacy against the platform along the current crowdsourcing task assignment process. Our approach (1) satisfies differential privacy by building on the well-known randomized response technique, applied by each worker to perturb locally her profile before sending it to the platform, and (2) copes with the resulting perturbation by benefiting from a taxonomy defined on workers profiles. We describe the lightweight upgrades to be brought to the workers, to the platform, and to the requesters. We show formally that our approach satisfies differential privacy, and empirically, through experiments performed on various synthetic datasets, that it is a promising research track for coping with realistic cost and quality requirements

    Enjeux de vie privĂ©e et d’équitĂ© posĂ©s par les systĂšmes de dĂ©cision algorithmiques

    No full text
    Les algorithmes sont de plus en plus utilisĂ©s pour prendre des dĂ©cisions impactant les individus, les cohortes et la sociĂ©tĂ© dans son ensemble. Cette ubiquitĂ© soulĂšve d’importantes prĂ©occupations Ă©thiques et sociales, notamment la protection de la vie privĂ©e et l’équitĂ©. Cette thĂšse Ă©tudie ces deux sujets techniques sous l’angle de leur utilisation pratique et de leurs exigences sociĂ©tales. Dans une premiĂšre contribution, nous examinons le conflit entre la vie privĂ©e et la transparence lors de la publication de procĂ©dures judiciaires. Dans une deuxiĂšme contribution, nous proposons un framework pour organiser des compĂ©titions d’attaque de mĂ©canismes de protection de la vie privĂ©e afin de mieux Ă©tablir leur comportement dans la pratique. Dans une troisiĂšme contribution, nous nous concentrons sur les limites des dĂ©finitions techniques d’équitĂ© et utilisons une simulation ancrĂ©e dans la rĂ©alitĂ© comme moyen d’observer leur impact Ă  long terme sur l’ensemble d’un systĂšme. L’objectif principal de cette thĂšse est de mettre en Ă©vidence les questions fondamentales soulevĂ©es par la technicisation des dĂ©fis sociaux ainsi que de proposer des outils techniques et des analyses visant Ă  ramener ces dĂ©fis sociotechniques dans leur contexte social.Algorithms are increasingly used across all layers of society, including in high-stake decision systems, impacting individuals, cohorts and society as a whole. This omnipresence of algorithms raises important ethical and social concerns, including in particular privacy and fairness. In this thesis, we study these two technical subjects under the lens of their practical usage and strong societal requirements. In a first contribution we investigate the conflict between privacy and transparency when publishing legal proceedings. In a second contribution, we propose a framework to organize privacy challenges with a focus on attacking privacy-preserving data publishing mechanisms to better define their behavior in practice. As a third contribution, we focus on the limits of technical fairness definitions and leverage a simulation grounded in reality as a way to observe the long-term impact of fairness on a whole system. Overall, the main objective of this thesis is to highlight fundamental issues raised by the technicization of social challenges as well as to propose technical tools and analyses aimed towards bringing these sociotechnical challenges back to their social context

    Lightweight Privacy-Preserving Task Assignment in Skill-Aware Crowdsourcing

    No full text
    Slides of Lightweight Privacy-Preserving Task Assignment in Skill-Aware Crowdsourcing at DEXA 201

    Enjeux de vie privĂ©e et d’équitĂ© posĂ©s par les systĂšmes de dĂ©cision algorithmiques

    No full text
    Algorithms are increasingly used across all layers of society, including in high-stake decision systems, impacting individuals, cohorts and society as a whole. This omnipresence of algorithms raises important ethical and social concerns, including in particular privacy and fairness. In this thesis, we study these two technical subjects under the lens of their practical usage and strong societal requirements. In a first contribution we investigate the conflict between privacy and transparency when publishing legal proceedings. In a second contribution, we propose a framework to organize privacy challenges with a focus on attacking privacy-preserving data publishing mechanisms to better define their behavior in practice. As a third contribution, we focus on the limits of technical fairness definitions and leverage a simulation grounded in reality as a way to observe the long-term impact of fairness on a whole system. Overall, the main objective of this thesis is to highlight fundamental issues raised by the technicization of social challenges as well as to propose technical tools and analyses aimed towards bringing these sociotechnical challenges back to their social context.Les algorithmes sont de plus en plus utilisĂ©s pour prendre des dĂ©cisions impactant les individus, les cohortes et la sociĂ©tĂ© dans son ensemble. Cette ubiquitĂ© soulĂšve d’importantes prĂ©occupations Ă©thiques et sociales, notamment la protection de la vie privĂ©e et l’équitĂ©. Cette thĂšse Ă©tudie ces deux sujets techniques sous l’angle de leur utilisation pratique et de leurs exigences sociĂ©tales. Dans une premiĂšre contribution, nous examinons le conflit entre la vie privĂ©e et la transparence lors de la publication de procĂ©dures judiciaires. Dans une deuxiĂšme contribution, nous proposons un framework pour organiser des compĂ©titions d’attaque de mĂ©canismes de protection de la vie privĂ©e afin de mieux Ă©tablir leur comportement dans la pratique. Dans une troisiĂšme contribution, nous nous concentrons sur les limites des dĂ©finitions techniques d’équitĂ© et utilisons une simulation ancrĂ©e dans la rĂ©alitĂ© comme moyen d’observer leur impact Ă  long terme sur l’ensemble d’un systĂšme. L’objectif principal de cette thĂšse est de mettre en Ă©vidence les questions fondamentales soulevĂ©es par la technicisation des dĂ©fis sociaux ainsi que de proposer des outils techniques et des analyses visant Ă  ramener ces dĂ©fis sociotechniques dans leur contexte social

    Enjeux de vie privĂ©e et d’équitĂ© posĂ©s par les systĂšmes de dĂ©cision algorithmiques

    No full text
    Algorithms are increasingly used across all layers of society, including in high-stake decision systems, impacting individuals, cohorts and society as a whole. This omnipresence of algorithms raises important ethical and social concerns, including in particular privacy and fairness. In this thesis, we study these two technical subjects under the lens of their practical usage and strong societal requirements. In a first contribution we investigate the conflict between privacy and transparency when publishing legal proceedings. In a second contribution, we propose a framework to organize privacy challenges with a focus on attacking privacy-preserving data publishing mechanisms to better define their behavior in practice. As a third contribution, we focus on the limits of technical fairness definitions and leverage a simulation grounded in reality as a way to observe the long-term impact of fairness on a whole system. Overall, the main objective of this thesis is to highlight fundamental issues raised by the technicization of social challenges as well as to propose technical tools and analyses aimed towards bringing these sociotechnical challenges back to their social context.Les algorithmes sont de plus en plus utilisĂ©s pour prendre des dĂ©cisions impactant les individus, les cohortes et la sociĂ©tĂ© dans son ensemble. Cette ubiquitĂ© soulĂšve d’importantes prĂ©occupations Ă©thiques et sociales, notamment la protection de la vie privĂ©e et l’équitĂ©. Cette thĂšse Ă©tudie ces deux sujets techniques sous l’angle de leur utilisation pratique et de leurs exigences sociĂ©tales. Dans une premiĂšre contribution, nous examinons le conflit entre la vie privĂ©e et la transparence lors de la publication de procĂ©dures judiciaires. Dans une deuxiĂšme contribution, nous proposons un framework pour organiser des compĂ©titions d’attaque de mĂ©canismes de protection de la vie privĂ©e afin de mieux Ă©tablir leur comportement dans la pratique. Dans une troisiĂšme contribution, nous nous concentrons sur les limites des dĂ©finitions techniques d’équitĂ© et utilisons une simulation ancrĂ©e dans la rĂ©alitĂ© comme moyen d’observer leur impact Ă  long terme sur l’ensemble d’un systĂšme. L’objectif principal de cette thĂšse est de mettre en Ă©vidence les questions fondamentales soulevĂ©es par la technicisation des dĂ©fis sociaux ainsi que de proposer des outils techniques et des analyses visant Ă  ramener ces dĂ©fis sociotechniques dans leur contexte social

    Enjeux de vie privĂ©e et d’équitĂ© posĂ©s par les systĂšmes de dĂ©cision algorithmiques

    No full text
    Algorithms are increasingly used across all layers of society, including in high-stake decision systems, impacting individuals, cohorts and society as a whole. This omnipresence of algorithms raises important ethical and social concerns, including in particular privacy and fairness. In this thesis, we study these two technical subjects under the lens of their practical usage and strong societal requirements. In a first contribution we investigate the conflict between privacy and transparency when publishing legal proceedings. In a second contribution, we propose a framework to organize privacy challenges with a focus on attacking privacy-preserving data publishing mechanisms to better define their behavior in practice. As a third contribution, we focus on the limits of technical fairness definitions and leverage a simulation grounded in reality as a way to observe the long-term impact of fairness on a whole system. Overall, the main objective of this thesis is to highlight fundamental issues raised by the technicization of social challenges as well as to propose technical tools and analyses aimed towards bringing these sociotechnical challenges back to their social context.Les algorithmes sont de plus en plus utilisĂ©s pour prendre des dĂ©cisions impactant les individus, les cohortes et la sociĂ©tĂ© dans son ensemble. Cette ubiquitĂ© soulĂšve d’importantes prĂ©occupations Ă©thiques et sociales, notamment la protection de la vie privĂ©e et l’équitĂ©. Cette thĂšse Ă©tudie ces deux sujets techniques sous l’angle de leur utilisation pratique et de leurs exigences sociĂ©tales. Dans une premiĂšre contribution, nous examinons le conflit entre la vie privĂ©e et la transparence lors de la publication de procĂ©dures judiciaires. Dans une deuxiĂšme contribution, nous proposons un framework pour organiser des compĂ©titions d’attaque de mĂ©canismes de protection de la vie privĂ©e afin de mieux Ă©tablir leur comportement dans la pratique. Dans une troisiĂšme contribution, nous nous concentrons sur les limites des dĂ©finitions techniques d’équitĂ© et utilisons une simulation ancrĂ©e dans la rĂ©alitĂ© comme moyen d’observer leur impact Ă  long terme sur l’ensemble d’un systĂšme. L’objectif principal de cette thĂšse est de mettre en Ă©vidence les questions fondamentales soulevĂ©es par la technicisation des dĂ©fis sociaux ainsi que de proposer des outils techniques et des analyses visant Ă  ramener ces dĂ©fis sociotechniques dans leur contexte social

    Enjeux de vie privĂ©e et d’équitĂ© posĂ©s par les systĂšmes de dĂ©cision algorithmiques

    No full text
    Algorithms are increasingly used across all layers of society, including in high-stake decision systems, impacting individuals, cohorts and society as a whole. This omnipresence of algorithms raises important ethical and social concerns, including in particular privacy and fairness. In this thesis, we study these two technical subjects under the lens of their practical usage and strong societal requirements. In a first contribution we investigate the conflict between privacy and transparency when publishing legal proceedings. In a second contribution, we propose a framework to organize privacy challenges with a focus on attacking privacy-preserving data publishing mechanisms to better define their behavior in practice. As a third contribution, we focus on the limits of technical fairness definitions and leverage a simulation grounded in reality as a way to observe the long-term impact of fairness on a whole system. Overall, the main objective of this thesis is to highlight fundamental issues raised by the technicization of social challenges as well as to propose technical tools and analyses aimed towards bringing these sociotechnical challenges back to their social context.Les algorithmes sont de plus en plus utilisĂ©s pour prendre des dĂ©cisions impactant les individus, les cohortes et la sociĂ©tĂ© dans son ensemble. Cette ubiquitĂ© soulĂšve d’importantes prĂ©occupations Ă©thiques et sociales, notamment la protection de la vie privĂ©e et l’équitĂ©. Cette thĂšse Ă©tudie ces deux sujets techniques sous l’angle de leur utilisation pratique et de leurs exigences sociĂ©tales. Dans une premiĂšre contribution, nous examinons le conflit entre la vie privĂ©e et la transparence lors de la publication de procĂ©dures judiciaires. Dans une deuxiĂšme contribution, nous proposons un framework pour organiser des compĂ©titions d’attaque de mĂ©canismes de protection de la vie privĂ©e afin de mieux Ă©tablir leur comportement dans la pratique. Dans une troisiĂšme contribution, nous nous concentrons sur les limites des dĂ©finitions techniques d’équitĂ© et utilisons une simulation ancrĂ©e dans la rĂ©alitĂ© comme moyen d’observer leur impact Ă  long terme sur l’ensemble d’un systĂšme. L’objectif principal de cette thĂšse est de mettre en Ă©vidence les questions fondamentales soulevĂ©es par la technicisation des dĂ©fis sociaux ainsi que de proposer des outils techniques et des analyses visant Ă  ramener ces dĂ©fis sociotechniques dans leur contexte social

    SNAKE challenge: Sanitization Algorithms under Attack

    No full text
    International audienceWhile there were already some privacy challenges organized in the domain of data sanitization, they have mainly focused on the defense side of the problem. To favor the organization of successful challenges focusing on attacks, we introduce the Snake framework that is designed to facilitate the organization of challenges dedicated to attacking existing data sanitization mechanisms. In particular, it enables to easily automate the redundant tasks that are inherent to any such challenge and exhibits the following salient features: genericity with respect to attacks, ease of use and extensibility. We propose to demonstrate the main features of the Snake framework through a specific instantiation focusing on membership inference attacks over differentially-private synthetic data generation schemes. This instance of the Snake framework is currently being used for supporting a challenge colocated with APVP 2023 (the French workshop on the protection of privacy)
    corecore