17 research outputs found

    Clinical Outcomes of Patients with Chronic Neuropathic Form of Gaucher Disease in the Spanish Real-World Setting: A Retrospective Study

    Get PDF
    Gaucher disease type 3; Clinical manifestations; MutationsEnfermedad de Gaucher tipo 3; Manifestaciones clínicas; MutacionesMalaltia de Gaucher tipus 3; Manifestacions clíniques; MutacionsThis was a retrospective, multicenter study that aimed to report the characteristics of type 3 Gaucher disease (GD3) patients in Spain, including the genotype, phenotype, therapeutic options, and treatment responses. A total of 19 patients with GD3 from 10 Spanish hospitals were enrolled in the study (14 men, 5 women). The median age at disease onset and diagnosis was 1 and 1.2 years, respectively, and the mean age at follow-up completion was 12.37 years (range: 1-25 years). Most patients exhibited splenomegaly (18/19) and hepatomegaly (17/19) at the time of diagnosis. The most frequent neurological abnormalities at onset were psychomotor retardation (14/19) and extrinsic muscle disorders (11/19), including oculomotor apraxia, supranuclear palsy, and strabismus. The L444P (c.1448T>C) allele was predominant, with the L444P (c.1448T>C) homozygous genotype mainly associated with visceral manifestations like hepatosplenomegaly, anemia, and thrombocytopenia. All patients received enzyme replacement therapy (ERT); other treatments included miglustat and the chaperone (ambroxol). Visceral manifestations, including hepatosplenomegaly and hematological and bone manifestations, were mostly controlled with ERT, except for kyphosis. The data from this study may help to increase the evidence base on this rare disease and contribute to improving the clinical management of GD3 patients.This research was funded by Sanofi Spain

    Long-Term Growth in Phenylketonuria: A Systematic Review and Meta-Analysis

    Get PDF
    There is an ongoing debate regarding the impact of phenylketonuria (PKU) and its treatment on growth. To date, evidence from studies is inconsistent, and data on the whole developmental period is limited. The primary aim of this systematic review was to investigate the effects of a phenylalanine (Phe)-restricted diet on long-term growth in patients with PKU. Four electronic databases were searched for articles published until September 2018. A total of 887 results were found, but only 13 articles met eligibility criteria. Only three studies had an adequate methodology for meta-analysis. Although the results indicate normal growth at birth and during infancy, children with PKU were significantly shorter and had lower weight for age than reference populations during the first four years of life. Impaired linear growth was observed until the end of adolescence in PKU. In contrast, growth impairment was not reported in patients with mild hyperphenylalaninemia, not requiring dietary restriction. Current evidence indicates that even with advances in dietary treatments, "optimal" growth outcomes are not attained in PKU. The majority of studies include children born before 1990s, so further research is needed to show the effects of recent dietary practices on growth in PKU.info:eu-repo/semantics/publishedVersio

    Development of a practical dietitian road map for the nutritional management of phenylketonuria (PKU) patients on pegvaliase

    Get PDF
    Funding Information: Outside the submitted work, the authors disclose the following. Bausell H received personal fees from BioMarin, Ultragenyx, Horizon and Vitaflo. Bélanger-Quintana A reports personal fees from BioMarin, Nutricia, Vitaflo, Orphan Europe, Takeda and Genzyme. Rocha JC received research grants from BioMarin, Glutamine and Cambrooke, as well as personal fees from BioMarin, Applied Pharma Research, Nutricia, Merck Serono, Vitaflo, Cambrooke, PIAM and Lifediet. MacDonald A reports research funding from BioMarin, Nutricia, Applied Pharma Research, Vitaflo, Galen, Metax, Mevalia and Arla, as well as lecture fees from BioMarin, Applied Pharma Research, Nutricia and Vitaflo, and consultancy fees from BioMarin, Applied Pharma Research, Arla, Nutricia and Vitaflo. Met Ed reports grant funding from BioMarin, Nutricia, Vitaflo and Horizon Pharmaceuticals. Bernstein L and Rohr F report lecture fees from Vitaflo. Publisher Copyright: © 2021 The Authors Copyright: Copyright 2021 Elsevier B.V., All rights reserved.Background: The metabolic dietitian/nutritionist (hereafter ‘dietitian’) plays an essential role in the nutritional management of patients with phenylketonuria (PKU), including those on pegvaliase. Currently, more educational support and clinical experience is needed to ensure that dietitians are prepared to provide optimal nutritional management and counselling of pegvaliase-treated patients. Methods: Via a face-to-face data-review meeting, followed by a virtual consolidation meeting, a group of expert dietitians and one paediatrician discussed and developed a series of recommendations on the nutritional evaluation and management of patients receiving pegvaliase. The consensus group consisted of 10 PKU experts: six dietitians and one paediatrician from Europe and three dietitians from the US. One European and three US dietitians had experience with pegvaliase-treated patients. Results: The consensus group recommended that a physician, dietitian and nurse are part of the pegvaliase treatment team. Additionally, a psychologist/counsellor should be included if available. Practical proposals for the nutritional evaluation of pegvaliase-treated patients at baseline, during the induction and titration phases and for long-term maintenance were developed. The consensus group suggested assessment of blood Phe at least monthly or every 2 weeks in the event of low blood Phe (i.e., blood Phe <30 μmol/L). It may be appropriate to increase blood Phe monitoring when adjusting protein intake and/or pegvaliase dose. It was recommended that natural protein intake is increased by 10–20 g increments if blood Phe concentrations decrease to <240 μmol/L in patients who are not meeting the dietary reference intake for natural protein of 0.8 g/kg. It was proposed that with pegvaliase treatment blood Phe levels could be maintained <240 μmol/L but more evidence on the safety of achieving physiological blood Phe levels is necessary before any recommendation on the lower blood Phe target can be given. Finally, both patients and dietitians should have access to educational resources to optimally support patients receiving pegvaliase. Conclusion: This practical road map aims to provide initial recommendations for dietitians monitoring patients with PKU prescribed pegvaliase. Given that practical experience with pegvaliase is still limited, nutritional recommendations will require regular updating once more evidence is available and clinical experience evolves.publishersversionpublishe

    Fluctuations in phenylalanine concentrations in phenylketonuria: a review of possible relationships with outcomes.

    Get PDF
    International audience; Fluctuations in blood phenylalanine concentrations may be an important determinant of intellectual outcome in patients with early and continuously treated phenylketonuria (PKU). This review evaluates the studies on phenylalanine fluctuations, factors affecting fluctuations, and if stabilizing phenylalanine concentrations affects outcomes, particularly neurocognitive outcome. Electronic literature searches of Embase and PubMed were performed for English-language publications, and the bibliographies of identified publications were also searched. In patients with PKU, phenylalanine concentrations are highest in the morning. Factors that can affect phenylalanine fluctuations include age, diet, timing and dosing of protein substitute and energy intake, dietary adherence, phenylalanine hydroxylase genotype, changes in dietary phenylalanine intake and protein metabolism, illness, and growth rate. Even distribution of phenylalanine-free protein substitute intake throughout 24h may reduce blood phenylalanine fluctuations. Patients responsive to and treated with 6R-tetrahydrobiopterin seem to have less fluctuation in their blood phenylalanine concentrations than controls. An increase in blood phenylalanine concentration may result in increased brain and cerebrospinal fluid phenylalanine concentrations within hours. Although some evidence suggests that stabilization of blood phenylalanine concentrations may have benefits in patients with PKU, more studies are needed to distinguish the effects of blood phenylalanine fluctuations from those of poor metabolic control

    Development of international consensus recommendations using a modified Delphi approach

    Get PDF
    Funding Information: This work was supported by BioMarin Pharmaceutical Inc . Funding Information: The content of this manuscript was based on preparatory pre-meeting activities and presentations and discussions during two advisory board meetings that were coordinated and funded by BioMarin Pharmaceutical Inc. All authors or their institutions received funding from BioMarin to attend at least one or both meetings. Additional disclosures: BKB received consulting payments from BioMarin, Shire, Genzyme, Alexion, Horizon Therapeutics, Denali Therapeutics, JCR Pharma, Moderna, Aeglea BioTherapeutics, SIO Gene Therapies, Taysha Gene Therapy, Ultragenyx, and Inventiva Pharma, participated as clinical trial investigator for BioMarin, Shire, Denali Therapeutics, Homology Medicines, Ultragenyx, and Moderna as well as received speaker fees from BioMarin, Shire, Genzyme, and Horizon Therapeutics. AH received consulting payments from BioMarin, Chiesi, Shire, Genzyme, Amicus, and Ultragenyx, participated as clinical trial investigator for Ultragenyx as well as received speaker fees from Alexion, Amicus, BioMarin, Genzyme, Nutricia, Sobi, and Takeda. ABQ received consulting payments from BioMarin, speaker fees from BioMarin, Nutricia, Vitaflo, Sanofi, Takeda, Recordati, and travel support from Vitaflo . SEC received consulting payments and speaker fees from BioMarin as well as consulting payments from Synlogic Therapeutics. COH was clinical trial investigator for BioMarin and received consulting and speaker payments from BioMarin. SCJH received consulting payments and travel support from BioMarin and Homology Medicines. NL received consulting payments from Alnylam, Amicus, Astellas, BioMarin, BridgeBio, Chiesi, Genzyme/Sanofi, HemoShear, Horizon Therapeutics, Jaguar, Moderna, Nestle, PTC Therapeutics, Reneo, Shire, Synlogic, and Ultragenyx, participated as clinical trial investigator for Aeglea, Amicus, Astellas, BioMarin, Genzyme/Sanofi, Homology, Horizon, Moderna, Pfizer, Protalix, PTC Therapeutics, Reneo, Retrophin/Travere therapeutics, Shire, and Ultragenyx, as well as received speaker fees from Cycle Pharmaceuticals, Leadiant and Recordati. MCM II received consulting payments from BioMarin, Horizon Therapeutics, Rhythm Pharmaceuticals, Applied Therapeutics, Cycle Therapeutics, and Ultragenyx. ALSP received speaker fees from BioMarin. JCR received consulting payments from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, and Nutricia, speaker fees from Applied Pharma Research, Merck Serono, BioMarin Pharmaceutical, Vitaflo, Cambrooke, PIAM, LifeDiet, and Nutricia, as well as travel support from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, Cambrooke, PIAM, and Nutricia. SS received consulting payments, research grants, speaker fees, and travel support from BioMarin and participated as clinical trials investigator for BioMarin. ASV received consulting payments from BioMarin, Horizon Therapeutics, and Ultragenyx and participated as clinical trial investigator for Acadia, Alexion, BioMarin, Genzyme, Homology Medicines, Kaleido, Mallinckrodt, and Ultragenyx. JV received consulting payments from BioMarin, LogicBio Pharmaceuticals, Sangamo Therapeutics, Orphan Labs, Synlogic Therapeutics, Sanofi, Axcella Health, Agios Pharmaceuticals, and Applied Therapeutics as well as travel grants from BioMarin and LogicBio Pharmaceuticals. MW received consulting payments, speaker fees, and travel support from BioMarin, and participated as clinical trial investigator for Mallinckrodt, Roche, Wave, Cycle Therapeutics, and Intrabio. ACM participated in strategic advisory boards and received honoraria as a consultant and as a speaker for Merck Serono, BioMarin, Nestlé Health Science (SHS), Applied Pharma Research, Actelion, Retrophin, Censa, PTC Therapeutics, and Arla Food. Funding Information: Ideally, access to (neuro)psychological/psychiatric support should assist adolescents with identifying, understanding, and reporting of PKU-specific challenges (Table 3), offering individualized recommendations on managing these challenges. Although there is no replacement for mental health services for patients with identified needs, psychosocial support from PKU peers, e.g., through PKU camps, virtual social events, etc., can at least in the short-term help to improve metabolic control by providing individuals an opportunity to participate in supportive PKU-related educational activities potentially reducing perceived social isolation [91]. In addition to PKU camps, which may be very specific to certain regions or countries, HCPs should consider encouraging involvement in local, regional, national and international PKU patient/family advocacy and social support organizations, introducing adolescents and young adults to national/international patient registries [92,93]. Besides support from PKU peers, patients can benefit from non-PKU peer support, although some adolescents and young adults with PKU may not disclose to others and may avoid eating in with others or eating in public due to potential feelings of anxiety or feelings of being ashamed of their disease. In addition, patients with PKU of all ages, but particularly vulnerable adolescents and young adults, can benefit from having the opportunity to learn about and practice strategies that help promote feelings of empowerment and self-efficacy that can be used in both familiar and unfamiliar environments where they may experience peer pressure and feel the need to ‘fit in’. For example, a role-play approach involving behavioral rehearsal, self-monitoring, goal setting, and training in problem-solving skills with emphasis on initiation and inhibition (i.e., how to say no) could be provided by parents, PKU peers, or even members of the PKU team. These types of activities can be used to teach adolescents with PKU how to react in social situations, such as dining out, helping to avoid indulging and increased risk-taking behavior, a hallmark of the adolescent period [94].This work was supported by BioMarin Pharmaceutical Inc.The content of this manuscript was based on preparatory pre-meeting activities and presentations and discussions during two advisory board meetings that were coordinated and funded by BioMarin Pharmaceutical Inc. All authors or their institutions received funding from BioMarin to attend at least one or both meetings. Additional disclosures: BKB received consulting payments from BioMarin, Shire, Genzyme, Alexion, Horizon Therapeutics, Denali Therapeutics, JCR Pharma, Moderna, Aeglea BioTherapeutics, SIO Gene Therapies, Taysha Gene Therapy, Ultragenyx, and Inventiva Pharma, participated as clinical trial investigator for BioMarin, Shire, Denali Therapeutics, Homology Medicines, Ultragenyx, and Moderna as well as received speaker fees from BioMarin, Shire, Genzyme, and Horizon Therapeutics. AH received consulting payments from BioMarin, Chiesi, Shire, Genzyme, Amicus, and Ultragenyx, participated as clinical trial investigator for Ultragenyx as well as received speaker fees from Alexion, Amicus, BioMarin, Genzyme, Nutricia, Sobi, and Takeda. ABQ received consulting payments from BioMarin, speaker fees from BioMarin, Nutricia, Vitaflo, Sanofi, Takeda, Recordati, and travel support from Vitaflo. SEC received consulting payments and speaker fees from BioMarin as well as consulting payments from Synlogic Therapeutics. COH was clinical trial investigator for BioMarin and received consulting and speaker payments from BioMarin. SCJH received consulting payments and travel support from BioMarin and Homology Medicines. NL received consulting payments from Alnylam, Amicus, Astellas, BioMarin, BridgeBio, Chiesi, Genzyme/Sanofi, HemoShear, Horizon Therapeutics, Jaguar, Moderna, Nestle, PTC Therapeutics, Reneo, Shire, Synlogic, and Ultragenyx, participated as clinical trial investigator for Aeglea, Amicus, Astellas, BioMarin, Genzyme/Sanofi, Homology, Horizon, Moderna, Pfizer, Protalix, PTC Therapeutics, Reneo, Retrophin/Travere therapeutics, Shire, and Ultragenyx, as well as received speaker fees from Cycle Pharmaceuticals, Leadiant and Recordati. MCM II received consulting payments from BioMarin, Horizon Therapeutics, Rhythm Pharmaceuticals, Applied Therapeutics, Cycle Therapeutics, and Ultragenyx. ALSP received speaker fees from BioMarin. JCR received consulting payments from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, and Nutricia, speaker fees from Applied Pharma Research, Merck Serono, BioMarin Pharmaceutical, Vitaflo, Cambrooke, PIAM, LifeDiet, and Nutricia, as well as travel support from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, Cambrooke, PIAM, and Nutricia. SS received consulting payments, research grants, speaker fees, and travel support from BioMarin and participated as clinical trials investigator for BioMarin. ASV received consulting payments from BioMarin, Horizon Therapeutics, and Ultragenyx and participated as clinical trial investigator for Acadia, Alexion, BioMarin, Genzyme, Homology Medicines, Kaleido, Mallinckrodt, and Ultragenyx. JV received consulting payments from BioMarin, LogicBio Pharmaceuticals, Sangamo Therapeutics, Orphan Labs, Synlogic Therapeutics, Sanofi, Axcella Health, Agios Pharmaceuticals, and Applied Therapeutics as well as travel grants from BioMarin and LogicBio Pharmaceuticals. MW received consulting payments, speaker fees, and travel support from BioMarin, and participated as clinical trial investigator for Mallinckrodt, Roche, Wave, Cycle Therapeutics, and Intrabio. ACM participated in strategic advisory boards and received honoraria as a consultant and as a speaker for Merck Serono, BioMarin, Nestlé Health Science (SHS), Applied Pharma Research, Actelion, Retrophin, Censa, PTC Therapeutics, and Arla Food. Publisher Copyright: © 2022 The AuthorsBackground: Early treated patients with phenylketonuria (PKU) often become lost to follow-up from adolescence onwards due to the historical focus of PKU care on the pediatric population and lack of programs facilitating the transition to adulthood. As a result, evidence on the management of adolescents and young adults with PKU is limited. Methods: Two meetings were held with a multidisciplinary international panel of 25 experts in PKU and comorbidities frequently experienced by patients with PKU. Based on the outcomes of the first meeting, a set of statements were developed. During the second meeting, these statements were voted on for consensus generation (≥70% agreement), using a modified Delphi approach. Results: A total of 37 consensus recommendations were developed across five areas that were deemed important in the management of adolescents and young adults with PKU: (1) general physical health, (2) mental health and neurocognitive functioning, (3) blood Phe target range, (4) PKU-specific challenges, and (5) transition to adult care. The consensus recommendations reflect the personal opinions and experiences from the participating experts supported with evidence when available. Overall, clinicians managing adolescents and young adults with PKU should be aware of the wide variety of PKU-associated comorbidities, initiating screening at an early age. In addition, management of adolescents/young adults should be a joint effort between the patient, clinical center, and parents/caregivers supporting adolescents with gradually gaining independent control of their disease during the transition to adulthood. Conclusions: A multidisciplinary international group of experts used a modified Delphi approach to develop a set of consensus recommendations with the aim of providing guidance and offering tools to clinics to aid with supporting adolescents and young adults with PKU.publishersversionpublishe

    Micronutrient status in phenylketonuria

    No full text
    Patients with phenylketonuria (PKU) encompass an 'at risk' group for micronutrient imbalances. Optimal nutrient status is challenging particularly when a substantial proportion of nutrient intake is from non-natural sources. In PKU patients following dietary treatment, supplementation with micronutrients is a necessity and vitamins and minerals should either be added to supplement phenylalanine-free l-amino acids or given separately. In this literature review of papers published since 1990, the prevalence of vitamin and mineral deficiency is described, with reference to age of treatment commencement, type of treatment, dietary compliance, and dietary practices. Biological micronutrient inadequacies have been mainly reported for zinc, selenium, iron, vitamin B12 and folate. The aetiology of these results and possible clinical and biological implications are discussed. In PKU there is not a simple relationship between the dietary intake and nutritional status, and there are many independent and interrelated complex factors that should be considered other than quantitative nutritional intake. © 2013 Elsevier Inc.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Main issues in micronutrient supplementation in phenylketonuria

    No full text
    For almost all patients with PKU, a low phenylalanine diet is the basis of the treatment despite a widely varying natural protein tolerance. A vitamin and mineral supplement is essential and it is commonly added to a phenylalanine-free (phe-free) source of l-amino acids. In PKU, many phe-free l-amino acid supplements have age-specific vitamin and mineral profiles to meet individual requirements. The main micronutrient sources are chemically derived and their delivery dosage is usually advised in three or more doses throughout the day. Within the EU, the composition of VM (vitamin and mineral) phe-free l-amino acid supplements is governed by the Foods for Special Medical Purposes (FSMP) directive (European Commission Directive number 1999/21/EC and amended by Directive 2006/141/EC). However the micronutrient composition of the majority fails to remain within FSMP micronutrient maximum limits per 100. kcal due to their low energy content and so compositional exceptions to the FSMP directive have to be granted for each supplement. All patients with PKU require an annual nutritional follow-up, until it has been proven that they are not at risk of any vitamin and mineral imbalances. When non-dietary treatments are used to either replace or act as an adjunct to diet therapy, the quality of micronutrient intake should still be considered important and monitored systematically. European guidelines are required about which micronutrients should be measured and the conditions (fasting status) for monitoring. © 2013 Elsevier Inc.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Adjusting Diet With Sapropterin In Phenylketonuria: What Factors Should Be Considered?

    Get PDF
    The usual treatment for phenylketonuria (PKU) is a phenylalanine-restricted diet. Following this diet is challenging, and long-term adherence (and hence metabolic control) is commonly poor. Patients with PKU (usually, but not exclusively, with a relatively mild form of the disorder) who are responsive to treatment with pharmacological doses of tetrahydrobiopterin (BH4) have either lower concentrations of blood phenylalanine or improved dietary phenylalanine tolerance. The availability of a registered formulation of BH4 (sapropterin dihydrochloride, Kuvan (R)) has raised many practical issues and new questions in the dietary management of these patients. Initially, patients and carers must understand clearly the likely benefits (and limitations) of sapropterin therapy. A minority of patients who respond to sapropterin are able to discontinue the phenylalanine-restricted diet completely, while others are able to relax the diet to some extent. Care is required when altering the phenylalanine-restricted diet, as this may have unintended nutritional consequences and must be undertaken with caution. New clinical protocols are required for managing any dietary change while maintaining control of blood phenylalanine, ensuring adequate nutrition and preventing nutritional deficiencies, overweight or obesity. An accurate initial evaluation of pre-sapropterin phenylalanine tolerance is essential, and the desired outcome from treatment with sapropterin (e. g. reduction in blood phenylalanine or relaxation in diet) must also be understood by the patient and carers from the outset. Continuing education and support will be required thereafter, with further adjustment of diet and sapropterin dosage as a young patient grows.WoSScopu
    corecore