66 research outputs found

    Light dark matter in the NMSSM: upper bounds on direct detection cross sections

    Get PDF
    In the Next-to-Minimal Supersymmetric Standard Model, a bino-like LSP can be as light as a few GeV and satisfy WMAP constraints on the dark matter relic density in the presence of a light CP-odd Higgs scalar. We study upper bounds on the direct detection cross sections for such a light LSP in the mass range 2-20 GeV in the NMSSM, respecting all constraints from B-physics and LEP. The OPAL constraints on e^+ e^- -> \chi^0_1 \chi^0_i (i > 1) play an important role and are discussed in some detail. The resulting upper bounds on the spin-independent and spin-dependent nucleon cross sections are ~ 10^{-42} cm^{-2} and ~ 4\times 10^{-40} cm^{-2}, respectively. Hence the upper bound on the spin-independent cross section is below the DAMA and CoGeNT regions, but could be compatible with the two events observed by CDMS-II.Comment: 17 pages, 3 figure

    Yukawa unification in SO(10) with light sparticle spectrum

    Get PDF
    We investigate supersymmetric SO(10) GUT model with \mu<0. The requirements of top-bottom-tau Yukawa unification, correct radiative electroweak symmetry breaking and agreement with the present experimental data may be met when the soft masses of scalars and gauginos are non-universal. We show how appropriate non-universalities can easily be obtained in the SO(10) GUT broken to the Standard Model. We discuss how values of BR(b-->s \gamma) and (g-2)_\mu simultaneously in a good agreement with the experimental data can be achieved in SO(10) model with \mu<0. In the region of the parameter space preferred by our analysis there are two main mechanisms leading to the LSP relic abundance consistent with the WMAP results. One is the co-annihilation with the stau and the second is the resonant annihilation via exchange of the Z boson or the light Higgs scalar. A very interesting feature of SO(10) models with negative \mu is that they predict relatively light sparticle spectra. Even the heaviest superpartners may easily have masses below 1.5 TeV in contrast to multi-TeV particles typical for models with positive \mu.Comment: 23 pages, 5 figure

    Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model

    Full text link
    We calculate the relic abundance of thermally produced neutralino cold dark matter in the general 19 parameter supergravity (SUGRA-19) model. A scan over GUT scale parameters reveals that models with a bino-like neutralino typically give rise to a dark matter density \Omega_{\tz_1}h^2\sim 1-1000, i.e. between 1 and 4 orders of magnitude higher than the measured value. Models with higgsino or wino cold dark matter can yield the correct relic density, but mainly for neutralino masses around 700-1300 GeV. Models with mixed bino-wino or bino-higgsino CDM, or models with dominant co-annihilation or A-resonance annihilation can yield the correct abundance, but such cases are extremely hard to generate using a general scan over GUT scale parameters; this is indicative of high fine-tuning of the relic abundance in these cases. Requiring that m_{\tz_1}\alt 500 GeV (as a rough naturalness requirement) gives rise to a minimal probably dip in parameter space at the measured CDM abundance. For comparison, we also scan over mSUGRA space with four free parameters. Finally, we investigate the Peccei-Quinn augmented MSSM with mixed axion/axino cold dark matter. In this case, the relic abundance agrees more naturally with the measured value. In light of our cumulative results, we conclude that future axion searches should probe much more broadly in axion mass, and deeper into the axion coupling.Comment: 23 pages including 17 .eps figure

    Low-energy Observables and General Gauge Mediation in the MSSM and NMSSM

    Full text link
    We study constraints on the general gauge mediation (GGM) parameter space arising from low-energy observables in the MSSM and NMSSM. Specifically, we look at the dependence of the spectra and observables on the correlation function ratios in the hidden sector where supersymmetry is presumably broken. Since these ratios are not a priori constrained by theory, current results from the muon anomalous magnetic moment and flavor physics can potentially provide valuable intuition about allowed possibilities. It is found that the muon anomalous magnetic moment and flavor-physics observables place significant constraints on the GGM parameter space with distinct dependences on the hidden sector correlation function ratios. The particle spectra arising in GGM, with the possibility of different correlation function ratios, is contrasted with common intuition from regular gauge mediation (RGM) schemes (where the ratios are always fixed). Comments are made on precision gauge coupling unification, topography of the NLSP space, correlations of the muon anomalous magnetic moment with other observables, and approximate scaling relations in sparticle masses with respect to the high-scale correlation function ratios.Comment: 43 pages, 16 figures. Typos corrected, updated references, acknowledgements and minor changes in expositio

    Sparticle mass spectra from SU(5) SUSY GUT models with bτb-\tau Yukawa coupling unification

    Full text link
    Supersymmetric grand unified models based on the gauge group SU(5) often require in addition to gauge coupling unification, the unification of b-quark and τ\tau-lepton Yukawa couplings. We examine SU(5) SUSY GUT parameter space under the condition of bτb-\tau Yukawa coupling unification using 2-loop MSSM RGEs including full 1-loop threshold effects. The Yukawa-unified solutions break down into two classes. Solutions with low tan\beta ~3-11 are characterized by gluino mass ~1-4 TeV and squark mass ~1-5 TeV. Many of these solutions would be beyond LHC reach, although they contain a light Higgs scalar with mass <123 GeV and so may be excluded should the LHC Higgs hint persist. The second class of solutions occurs at large tan\beta ~35-60, and are a subset of tbτt-b-\tau unified solutions. Constraining only bτb-\tau unification to ~5% favors a rather light gluino with mass ~0.5-2 TeV, which should ultimately be accessible to LHC searches. While our bτb-\tau unified solutions can be consistent with a picture of neutralino-only cold dark matter, invoking additional moduli or Peccei-Quinn superfields can allow for all of our Yukawa-unified solutions to be consistent with the measured dark matter abundance.Comment: 19 pages, 5 figures, 1 table, PDFLate

    Probing natural SUSY from stop pair production at the LHC

    Full text link
    We consider the natural supersymmetry scenario in the framework of the R-parity conserving minimal supersymmetric standard model (called natural MSSM) and examine the observability of stop pair production at the LHC. We first scan the parameters of this scenario under various experimental constraints, including the SM-like Higgs boson mass, the indirect limits from precision electroweak data and B-decays. Then in the allowed parameter space we study the stop pair production at the LHC followed by the stop decay into a top quark plus a lightest neutralino or into a bottom quark plus a chargino. From detailed Monte Carlo simulations of the signals and backgrounds, we find the two decay modes are complementary to each other in probing the stop pair production, and the LHC with s=14\sqrt{s}= 14 TeV and 100 fb1fb^{-1} luminosity is capable of discovering the stop predicted in natural MSSM up to 450 GeV. If no excess events were observed at the LHC, the 95% C.L. exclusion limits of the stop masses can reach around 537 GeV.Comment: 19 pages, 10 figures, version accepted by JHE

    R-parity Conservation via the Stueckelberg Mechanism: LHC and Dark Matter Signals

    Get PDF
    We investigate the connection between the conservation of R-parity in supersymmetry and the Stueckelberg mechanism for the mass generation of the B-L vector gauge boson. It is shown that with universal boundary conditions for soft terms of sfermions in each family at the high scale and with the Stueckelberg mechanism for generating mass for the B-L gauge boson present in the theory, electric charge conservation guarantees the conservation of R-parity in the minimal B-L extended supersymmetric standard model. We also discuss non-minimal extensions. This includes extensions where the gauge symmetries arise with an additional U(1)_{B-L} x U(1)_X, where U(1)_X is a hidden sector gauge group. In this case the presence of the additional U(1)_X allows for a Z' gauge boson mass with B-L interactions to lie in the sub-TeV region overcoming the multi-TeV LEP constraints. The possible tests of the models at colliders and in dark matter experiments are analyzed including signals of a low mass Z' resonance and the production of spin zero bosons and their decays into two photons. In this model two types of dark matter candidates emerge which are Majorana and Dirac particles. Predictions are made for a possible simultaneous observation of new physics events in dark matter experiments and at the LHC.Comment: 38 pages, 7 fig

    Uncovering Natural Supersymmetry via the interplay between the LHC and direct Dark Matter detection

    Get PDF
    We have explored Natural Supersymmetry (NSUSY) scenarios with low values of the μ parameter which are characterised by higgsino-like Dark Matter (DM) and compressed spectra for the lightest MSSM particles, χ10, χ20 and χ1±. This scenario could be probed via monojet signatures, but as the signal-to-background ratio (S/B) is low we demonstrate that the 8 TeV LHC cannot obtain limits on the DM mass beyond those of LEP2. On the other hand, we have found, for the 13 TeV run of the LHC, that by optimising kinematical cuts we can bring the S/B ratio up to the 5(3)% level which would allow the exclusion of the DM mass up to 200(250) GeV respectively, significantly extending LEP2 limits. Moreover, we have found that LUX/XENON1T and LHC do play very complementary roles in exploring the parameter space of NSUSY, as the LHC has the capability to access regions where DM is quasi-degenerate with other higgsinos, which are challenging for direct detection experiments

    Lithothamnion (Hapalidiales, Rhodophyta) in the changing Arctic and Subarctic: DNA sequencing of type and recent specimens provides a systematics foundation*

    Get PDF
    Coralline red algae in the non-geniculate genera Clathromorphum, Phymatolithon and Lithothamnion are important benthic ecosystem engineers in the photic zone of the Arctic and Subarctic. In these regions, the systematics and biogeography of Clathromorphum and Phymatolithon have mostly been resolved whereas Lithothamnion has not, until now. Seventy-three specific and infraspecific names were given to Arctic and Subarctic Lithothamnion specimens in the late 19th and early 20th century by Frans R. Kjellman and Mikael H. Foslie. DNA sequences from 36 type specimens, five historical specimens, and an extensive sampling of recent collections resulted in the recognition of four Arctic and Subarctic Lithothamnion species, L. glaciale, L. lemoineae, L. soriferum and L. tophiforme. Three genes were sequenced, two plastid-encoded, rbcL and psbA, and the mitochondrial encoded COI-5P; rbcL and COI-5P segregated L. glaciale from L. tophiforme but psbA did not. Partial rbcL sequences obtained from type collections enabled us to correctly apply the earliest available names and to correctly place the remainder in synonymy. We were unable to sequence another 22 type specimens, but all of these are more recent names than those that are now applied. It is difficult to identify these species solely on morpho-anatomy as they can all occur as encrusting corallines or as maerl (rhodoliths). We demonstrate the importance of sequencing historical type specimens by showing that the recently proposed North-east Atlantic L. erinaceum is a synonym of one of the earliest published Arctic species of Lithothamnion, L. soriferum, itself incorrectly placed in synonymy under L. tophiforme based on morpho-anatomy. Based on sequenced specimens, we update the distributions and ecology of these species

    125 GeV Higgs Boson from t-b-tau Yukawa Unification

    Full text link
    We identify a class of supersymmetric SU(4)_c x SU(2)_L x SU(2)_R models in which imposing essentially perfect t-b-tau Yukawa coupling unification at M_GUT yields a mass close to 122-126 GeV for the lightest CP-even (SM-like) Higgs boson. The squark and gluino masses in these models exceed 3 TeV, but the stau and charginos in some cases can be considerably lighter. We display some benchmark points corresponding to neutralino-stau and bino-wino coannihilations as well as A-resonance. The well-known MSSM parameter tan beta is around 46-52.Comment: 16 pages, 4 figure
    corecore