7 research outputs found

    Estimation des forces musculaires du membre supérieur humain par optimisation dynamique en utilisant une méthode directe de tir multiple

    Full text link
    La modélisation musculo-squelettique permet d’estimer les forces internes du corps humain, à savoir, les forces musculaires et articulaires. Ces estimations sont nécessaires pour comprendre l’anatomie fonctionnelle, les mécanismes de blessures ou encore de concevoir des aides techniques à la motricité. Le défi est d’utiliser l’ensemble des données biomécaniques existantes pour prédire des forces internes qui tiennent compte des stratégies neuro-musculo-squelettiques propres à chacun. L’objectif de cette thèse était d’estimer les forces musculaires du membre supérieur humain par optimisation dynamique, en proposant une méthode innovante de suivi simultané des données électromyographiques (EMG) et cinématiques. À cet égard, nos quatre objectifs spécifiques étaient de : (1) résoudre ce problème d’optimisation dynamique en utilisant une méthode directe de tir multiple ; (2) déterminer sa pertinence et sa performance par rapport aux autres algorithmes existants ; (3) valider son applicabilité à des données expérimentales ; et (4) caractériser des techniques d’identification (numériques et expérimentales) des propriétés musculaires, notamment à l’aide d’un ergomètre isocinétique. Nos différentes études ont permis d’établir que, en un temps de calcul raisonnable (~ 1 heure), notre nouvelle méthode de suivi simultané en optimisation dynamique est à-même de reproduire la cinématique attendue avec une précision de l’ordre de 5°. En outre, l'erreur quadratique moyenne sur les forces musculaires a été réduite d’au moins cinq fois avec notre nouvelle méthode, comparativement aux optimisations statique, hybride et dynamique reposant sur des fonctions-objectif de moindres-activations/excitations (erreur sur les forces musculaires de 18,45 ± 12,60 N avec notre nouvelle méthode contre 85,10 ± 116,40 N avec une optimisation hybride faisant le suivi des moments articulaires). Notre algorithme a également montré son efficacité lors de l’identification des propriétés musculaires d’un modèle musculo-squelettique générique : ce faisant, des excitations musculaires avec deux fois moins d’erreurs vis-à-vis de l’EMG expérimental ont été obtenues, comparativement à l’optimisation statique. Finalement, en termes de calibration du modèle musculo-squelettique, nous avons pu établir que la mesure expérimentale du moment articulaire à l’épaule au moyen de l’ergomètre isocinétique est inadéquate, en particulier lors de mouvements de rotation interne/externe de l’épaule. En effet, les composantes en flexion et abduction du moment à l’épaule mesurées par l’ergomètre isocinétique sont significativement sous-estimées (jusqu'à 94,9% par rapport au moment résultant calculé à partir des efforts tridimensionnels à la main et au coude, mesurés par des capteurs de force six axes). Par conséquent, cette thèse a mis en évidence l’importance du suivi simultané de l’EMG et de la cinématique en optimisation dynamique, afin de rendre fiables les estimations de forces musculaires du membre supérieur – notamment, dans les cas de forte co-contraction musculaire. Elle également a permis d’établir des recommandations qui serviront lors de la calibration du modèle à partir de l’ergomètre isocinétique. Notre méthode innovante pourra être appliquée à des populations pathologiques, afin de comprendre la pathomécanique et mieux intervenir auprès des professionnels de la santé et de leurs patients.Musculoskeletal modeling is used to estimate the internal forces of the human body, namely, muscle and joint forces. These estimates are necessary to understand functional anatomy and pathogenesis or to design technical devices supporting the movement. The challenge is to use all existing biomechanical data to predict internal forces that account for the neuro-musculoskeletal strategies of each individual. The purpose of this thesis was to estimate the human upper-limb muscles forces using forward dynamic optimisation. To do so, we proposed an innovative method tracking both electromyographic (EMG) and kinematic data directly into the optimisation objective-function. In this regard, our four specific objectives were: (1) solving the forward-dynamic optimisation problem using a direct multiple shooting method; (2) determining its relevance and performance compared to other existing algorithms in the literature; (3) validating its applicability to experimental data; and (4) characterizing techniques to identify the model muscle properties using the isokinetic dynamometer. In our different studies, we have demonstrated that, in a reasonable computation time (~ 1 hour), our new dynamic-optimisation method is able to predict the joint kinematics with an accuracy of about 5°. In addition, the muscle forces root-mean-square error was reduced by at least five times with our new method compared to static, hybrid, and dynamic optimisations based on least-activations/excitations objective-functions (muscle forces error of 18.45 ± 12.60 N with our new method vs. 85.10 ± 116.40 N with a traditional hybrid optimisation tracking the joint torques). Our new algorithm also proved to be efficient in identifying the muscle properties of a generic musculoskeletal model: in doing so, the error between the optimised muscle excitations and the experimental EMG was two time lower than the one obtained with static optimisation. Finally, regarding the calibration of the musculoskeletal model, we established that the experimental joint torque measurement at the shoulder using the isokinetic dynamometer was not suitable, especially during internal/external rotation movements of the shoulder. In fact, the flexion and abduction components of the shoulder torque measured by the isokinetic dynamometer are significantly underestimated (up to 94.9% compared to the resulting torque calculated from the three-dimensional forces at the hand and at the elbow, measured by six-axis force sensors). Therefore, this thesis has emphasized the importance of tracking both EMG and kinematics in dynamic optimisation, in order to make reliable estimations of the upper-limb muscle forces – specifically when high co-contraction occurs. Besides, recommendations were issued about calibrating the musculoskeletal model from the experimental torques measured with the isokinetic dynamometer. It will be possible to apply our innovative forward-dynamic optimisation method to pathological populations to increase understanding of the pathomechanics of human movement and better assist health professionals and their patients

    Using a quantitative assessment of propulsion biomechanics in wheelchair racing to guide the design of personalized gloves: a case study

    Full text link
    This study with a T-52 class wheelchair racing athlete aimed to combine quantitative biomechanical measurements to the athlete's perception to design and test different prototypes of a new kind of rigid gloves. Three personalized rigid gloves with various, fixed wrist extension angles were prototyped and tested on a treadmill in a biomechanics laboratory. The prototype with 45{\deg} wrist extension was the athlete's favourite as it reduced his perception of effort. Biomechanical assessment and user-experience data indicated that his favourite prototype increased wrist stability throughout the propulsion cycle while maintaining a very similar propulsion technique to the athlete's prior soft gloves. Moreover, the inclusion of an innovative attachment system on the new gloves allowed the athlete to put his gloves on by himself, eliminating the need for external assistance and thus significantly increasing his autonomy. This multidisciplinary approach helped to prototype and develop a new rigid personalized gloves concept and is clearly a promising avenue to tailor adaptive sports equipment to an athlete's needs.Comment: 13 pages, 6 figure

    An Optimization Method Tracking EMG, Ground Reactions Forces, and Marker Trajectories for Musculo-Tendon Forces Estimation in Equinus Gait

    Get PDF
    In the context of neuro-orthopedic pathologies affecting walking and thus patients' quality of life, understanding the mechanisms of gait deviations and identifying the causal motor impairments is of primary importance. Beside other approaches, neuromusculoskeletal simulations may be used to provide insight into this matter. To the best of our knowledge, no computational framework exists in the literature that allows for predictive simulations featuring muscle co-contractions, and the introduction of various types of perturbations during both healthy and pathological gait types. The aim of this preliminary study was to adapt a recently proposed EMG-marker tracking optimization process to a lower limb musculoskeletal model during equinus gait, a multiphase problem with contact forces. The resulting optimization method tracking EMG, ground reactions forces, and marker trajectories allowed an accurate reproduction of joint kinematics (average error of 5.4 ± 3.3 mm for pelvis translations, and 1.9 ± 1.3° for pelvis rotation and joint angles) and ensured good temporal agreement in muscle activity (the concordance between estimated and measured excitations was 76.8 ± 5.3 %) in a relatively fast process (3.88 ± 1.04 h). We have also highlighted that the tracking of ground reaction forces was possible and accurate (average error of 17.3 ± 5.5 N), even without the use of a complex foot-ground contact model
    corecore