392 research outputs found

    Confirming the least massive members of the Pleiades star cluster

    Full text link
    We present optical photometry (i- and Z-band) and low-resolution spectroscopy (640-1015 nm) of very faint candidate members (J = 20.2-21.2 mag) of the Pleiades star cluster (120 Myr). The main goal is to address their cluster membership via photometric, astrometric, and spectroscopic studies, and to determine the properties of the least massive population of the cluster through the comparison of the data with younger and older spectral counterparts and state-of-the art model atmospheres. We confirm three bona-fide Pleiades members that have extremely red optical and infrared colors, effective temperatures of ~1150 K and ~1350 K, and masses in the interval 11-20 Mjup, and one additional likely member that shares the same motion as the cluster but does not appear to be as red as the other members with similar brightness. This latter object requires further near-infrared spectroscopy to fully address its membership in the Pleiades. The optical spectra of two bona-fide members were classified as L6-L7 and show features of KI, a tentative detection of CsI, hydrides and water vapor with an intensity similar to high-gravity dwarfs of related classification despite their young age. The properties of the Pleiades L6-L7 members clearly indicate that very red colors of L dwarfs are not a direct evidence of ages younger than ~100 Myr. We also report on the determination of the bolometric corrections for the coolest Pleiades members. These data can be used to interpret the observations of the atmospheres of exoplanets orbiting stars.Comment: Accepted for publication in MNRAS (17 pages

    Trigonometric parallaxes of young field L dwarfs

    Full text link
    (Abridged) We aim to determine the trigonometric parallaxes and proper motions of a sample of ten field L0-L5 dwarfs with spectroscopic evidence for low-gravity atmospheres. We obtained J and Ks imaging data using 2-4-m class telescopes with a typical cadence of one image per month between 2010 January and 2012 December. We also obtained low resolution optical spectra (R~300, 500-1100 nm) using the 10-m GTCs to assess the presence of lithium absorption in four targets and confirm their young age. Trigonometric parallaxes and proper motions were derived to typical accuracies of 1 mas and +/-10 mas/yr. All ten L dwarfs have large motions, and are located at distances between 9 and 47 pc. They lie above and on the sequence of field dwarfs in the absolute J and K_s magnitude versus spectral type and luminosity versus Teff diagrams, implying ages similar to or smaller than those typical of the field. The detection of atomic lithium in the atmosphere of 2MASS J00452143+1634446 is reported for the first time. Three dwarfs have locations in the HR diagram indicative of old ages and high masses consistent with the observed lithium depletion previously published. We did not find evidence for the presence of astrometric companions with minimum detectable masses typically >=25 Mjup and face-on, circular orbits with periods between 60-90 d and 3 yr around eight targets. The astrometric and spectroscopic data indicate that about 60-70% of the field L-type dwarfs in our sample with evidence for low-gravity atmospheres are indeed young-to-intermediate-age brown dwarfs of the solar neighborhood with expected ages and masses in the intervals 10-500 Myr and 11-45 Mjup. The peaked-shape of the H-band spectra of L dwarfs, a signpost of youth, appears to be present up to ages of 120-500 Myr and intermediate-to-high gravities.Comment: Accepted for publication in A&

    Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    Full text link
    Whether BDs form as stars through gravitational collapse ("star-like") or BDs and some very low-mass stars constitute a separate population which form alongside stars comparable to the population of planets, e.g. through circumstellar disk ("peripheral") fragmentation, is one of the key questions of the star-formation problem. For young stars in Taurus-Auriga the binary fraction is large with little dependence on primary mass above ~0.2Msun, while for BDs it is <10%. We investigate a case in which BDs in Taurus formed dominantly through peripheral fragmentation. The decline of the binary frequency in the transition region between star-like and peripheral formation is modelled. A dynamical population synthesis model is employed in which stellar binary formation is universal. Peripheral objects form separately in circumstellar disks with a distinctive initial mass function (IMF), own orbital parameter distributions for binaries and a low binary fraction. A small amount of dynamical processing of the stellar component is accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. The binary fraction declines strongly between the mass-limits for star-like and peripheral formation. The location of characteristic features and the steepness depend on these mass-limits. Such a trend might be unique to low density regions hosting dynamically unprocessed binary populations. The existence of a strong decline in the binary fraction -- primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star forming region. It is a test of the (non-)continuity of star formation along the mass-scale, the separateness of the stellar and BD populations and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.Comment: accepted for publication in A&A, 11 pages, 4 figures, 1 tabl

    Keck NIRC Observations of Planetary-mass Candidate Members in the sigma Orionis Open Cluster

    Full text link
    We present K-band photometry and low-resolution near-infrared spectroscopy from 1.44 to 2.45 micron of isolated planetary-mass candidate members in the sigma Orionis cluster found by Zapatero Osorio et al. The new data have been obtained with NIRC at the Keck I telescope. All of our targets, except for one, are confirmed as likely cluster members. Hence, we also confirm that the planetary-mass domain in the cluster is well populated. Using our deep K-band images we searched for companions to the targets in the separation range 0.3" to 10" up to a maximum faint limit of K=19.5 mag. One suspected companion seems to be an extremely red galaxy. The near-infrared colors of the sigma Orionis substellar members indicate that dust grains condense and settle in their atmospheres. We estimate that the surface temperatures range from 2500 K down to 1500 K. The spectroscopic sequence covers the full range of L subclasses, and the faintest object is tentatively classified as T0. These targets provide a sequence of substellar objects of known age, distance and metallicity, which can be used as benchmark for understanding the spectral properties of ultracool dwarfs.Comment: Accepted for publication in ApJ Letters. 9 pages, 4 figures include

    S Ori J053825.4-024241: A Classical T Tauri-like object at the substellar boundary

    Full text link
    We present a spectrophotometric analysis of S Ori J053825.4-024241, a candidate member close to the substellar boundary of the young (1-8 Myr), nearby (~360 pc) sigma Orionis star cluster. Our optical and near-infrared photometry and low-resolution spectroscopy indicate that S Ori J053825.4-024241 is a likely cluster member with a mass estimated from evolutionary models at 0.06+0.07-0.02 Msol, which makes the object a probable brown dwarf. The radial velocity of S Ori J053825.4-024241 is similar to the cluster systemic velocity. This target, which we have classified as an M 6.0+-1.0 low-gravity object, shows excessemission in the near-infrared and anomalously strong photometric variability for its type (from the blue to the J band), suggesting the presence of a surrounding disc. The optical spectroscopic observations show a continuum excess at short wavelengths and a persistent and resolved Halpha emission (pseudo-equivalent width of ~-250 AA) in addition to the presence of other forbidden and permitted emission lines, which we interpret as indicating accretion from the disc and possibly mass loss. We conclude that despite the low mass of S Ori J053825.4-024241, this object exhibits some of the properties typical of active classical T Tauri stars.Comment: 12 pages, 15 figures. Accepted for publication in Astronomy & Astrophysics, section 5. Galactic structure, stellar clusters and populations. The official date of acceptance is 24/08/2005. Acknowledgements of the use of telescopes, instruments, catalogues and software are also give

    Activity at the Deuterium-Burning Mass Limit in Orion

    Full text link
    We report very intense and variable Halpha emission (pseudo-equivalent widths of ~180, 410 A) of S Ori 55, a probable free-floating, M9-type substellar member of the young sigma Orionis open star cluster. After comparison with state-of-the-art evolutionary models, we infer that S Ori 55 is near or below the cluster deuterium-burning mass borderline, which separates brown dwarfs and planetary-mass objects. We find its mass to be 0.008-0.015 Msun for ages between 1 Myr and 8 Myr, with ~0.012 Msun the most likely value at the cluster age of 3 Myr. The largest Halpha intensity reached the saturation level of log L(Halpha)/L(bol) = -3. We discuss several possible scenarios for such a strong emission. We also show that sigma Orionis M and L dwarfs have in general more Halpha emission than their older field spectral counterparts. This could be due to a decline in the strength of the magnetic field with age in brown dwarfs and isolated planetary-mass objects, or to a likely mass accretion from disks in the very young sigma Orionis substellar members.Comment: Accepted for publication in ApJ Letters. Nine pages (figures included

    Hunting for brown dwarf binaries and testing atmospheric models with X-Shooter

    Get PDF
    The determination of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Unresolved brown dwarf binaries may be revealed through their peculiar spectra or the discrepancy between optical and near-infrared spectral type classification. We obtained medium-resolution spectra of 22 brown dwarfs with these characteristics using the X-Shooter spectrograph at the VLT. We aimed to identify brown dwarf binary candidates, and to test if the BT-Settl 2014 atmospheric models reproduce their observed spectra. To find binaries spanning the L-T boundary, we used spectral indices and compared the spectra of the selected candidates to single spectra and synthetic binary spectra. We used synthetic binary spectra with components of same spectral type to determine as well the sensitivity of the method to this class of binaries. We identified three candidates to be combination of L plus T brown dwarfs. We are not able to identify binaries with components of similar spectral type. In our sample, we measured minimum binary fraction of 9.13.0+9.99.1^{+9.9}_{-3.0}. From the best fit of the BT-Settl models 2014 to the observed spectra, we derived the atmospheric parameters for the single objects. The BT-Settl models were able to reproduce the majority of the SEDs from our objects, and the variation of the equivalent width of the RbI (794.8 nm) and CsI (852.0 nm) lines with the spectral type. Nonetheless, these models did not reproduce the evolution of the equivalent widths of the NaI (818.3 nm and 819.5 nm) and KI (1253 nm) lines with the spectral type.Comment: Accepted for publication in MNRA

    XMM-Newton observations of the sigma Ori cluster. II. Spatial and spectral analysis of the full EPIC field

    Full text link
    We present the results of an XMM-Newton observation of the young (~2-4 Myr) cluster around the hot star sigma Orionis. In a previous paper we presented the analysis of the RGS spectrum of the central hot star; here we discuss the results of the analysis of the full EPIC field. We have detected 175 X-ray sources, 88 of which have been identified with cluster members, including very low-mass stars down to the substellar limit. We detected eleven new possible candidate members from the 2MASS catalogue. We find that late-type stars have a median log L_X/L_bol ~ -3.3, i.e. very close to the saturation limit. We detected significant variability in ~40% of late-type members or candidates, including 10 flaring sources; rotational modulation is detected in one K-type star and possibly in another 3 or 4 stars. Spectral analysis of the brightest sources shows typical quiescent temperatures in the range T_1 ~ 0.3-0.8 keV and T_2 ~ 1-3 keV, with subsolar abundances Z ~ 0.1-0.3 Z_sun, similar to what is found in other star-forming regions and associations. We find no significant difference in the spectral properties of classical and weak-lined T Tauri stars, although classical T Tauri stars tend to be less X-ray luminous than weak-lined T Tauri stars.Comment: 20 pages, 10 figures, 6 tables. Accepted by A&

    An L-type substellar object in Orion: reaching the mass boundary between brown dwarfs and giant planets

    Get PDF
    We present J-band photometry and low-resolution optical spectroscopy (600-1000 nm) for one of the faintest substellar member candidates in the young sigma Ori cluster, SOri 47 (I=20.53, Bejar et al. 1999). Its very red (I-J)=3.3+/-0.1 color and its optical spectrum allow us to classify SOri 47 as an L1.5-type object which fits the low-luminosity end of the cluster photometric and spectroscopic sequences. It also displays atmospheric features indicative of low gravity such as weak alkaline lines and hydride and oxide bands, consistent with the expectation for a very young object still undergoing gravitational collapse. Our data lead us to conclude that SOri 47 is a true substellar member of the sigma Ori cluster. Additionally, we present the detection of LiI in its atmosphere which provides an independent confirmation of youth and substellarity. Using current theoretical evolutionary tracks and adopting an age interval of 1-5 Myr for the sigma Ori cluster, we estimate the mass of SOri 47 at 0.015+/-0.005 Msun, i.e. at the minimum mass for deuterium burning, which has been proposed as a definition for the boundary between brown dwarfs and giant planets. SOri 47 could well be the result of a natural extension of the process of cloud fragmentation down to the deuterium burning mass limit; a less likely alternative is that it has originated from a protoplanetary disc around a more massive cluster member and later ejected from its orbit due to interacting effects within this rather sparse (~12 objects/pc^3) young cluster.Comment: 9 pages, 3 figures, accepted for publication in ApJ Letter
    corecore