7 research outputs found

    Tungsten-enhanced growth of Methanosphaera stadtmanae

    Get PDF
    Background: The methanogenic Archaea Methanosphaera stadtmanae has been detected in the human gut microbiota by both culture and culture-independent methods. Its growth reaches an exponential phase after 5 to 7-day culture in medium 322 (10% vol). Our recent successful isolation of Methanomassiliicoccus luminyensis, a tungstate-selenite-requiring Archaea sharing similar metabolism characteristics with M. stadtmanae prompted us to study the effects of tungsten and selenium on M. stadtmanae growth.Findings: Addition of 0.2 mg/L sodium tungstate to medium 322 yielded, 48 hours after inoculation, a growth rate equivalent to that obtained after 6 days with control culture as measured by methane monitoring and optical density measurement. Addition of 50 ÎŒg/mL sodium selenate had no effect on M. stadtmanae growth. Quantitative real-time PCRs targeting the M. stadtmanae 16S rRNA confirmed these data.Conclusions: These data provide new information regarding the poorly known nutritional requirements of the human gut colonizing organisms M. stadtmanae. Adding sodium tungstate to basal medium may facilitate phenotypic characterization of this organism and additionally aid the isolation of new Archaeafrom complex host microbiota

    High Prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae Detected in the Human Gut Using an Improved DNA Detection Protocol

    Get PDF
    Background: The low and variable prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae DNA in human stool contrasts with the paramount role of these methanogenic Archaea in digestion processes. We hypothesized that this contrast is a consequence of the inefficiencies of current protocols for archaeon DNA extraction. We developed a new protocol for the extraction and PCR-based detection of M. smithii and M. stadtmanae DNA in human stool. Methodology/Principal Findings: Stool specimens collected from 700 individuals were filtered, mechanically lysed twice, and incubated overnight with proteinase K prior to DNA extraction using a commercial DNA extraction kit. Total DNA was used as a template for quantitative real-time PCR targeting M. smithii and M. stadtmanae 16S rRNA and rpoB genes. Amplification of 16S rRNA and rpoB yielded positive detection of M. smithii in 95.7% and M. stadtmanae in 29.4% of specimens. Sequencing of 16S rRNA gene PCR products from 30 randomly selected specimens ( 15 for M. smithii and 15 for M. stadtmanae) yielded a sequence similarity of 99-100% using the reference M. smithii ATCC 35061 and M. stadtmanae DSM 3091 sequences. Conclusions/Significance: In contrast to previous reports, these data indicate a high prevalence of the methanogens M. smithii and M. stadtmanae in the human gut, with the former being an almost ubiquitous inhabitant of the intestinal microbiome

    Isolement d'une nouvelle Archaea methanogĂšne "Methanomassiliicoccus luminyensis" Ă  partir du tube digestif humain

    No full text
    Les Archaea methanogĂšnes sont des organismes environnementaux ayant Ă©tĂ© Ă©galement dĂ©tectĂ©s dans certaines flores associĂ©es aux muqueuses des mammifĂšres. Chez l’homme ces microorganismes ont Ă©tĂ© associĂ©s avec les muqueuses intestinale, vaginale et orale. Ces organismes sont des procaryotes anaĂ©robies stricts et leurs conditions de culture restent fastidieuses et trĂšs mal connues. En effet, uniquement trois Archaea methanogĂšnes ont Ă©tĂ© cultivĂ©es Ă  partir de prĂ©lĂšvements humains, Methanobrevibater smithii et Methanosphaera stadtmanae Ă  partir des selles puis Methanobrevibater oralis Ă  partir de la plaque dentaire. RĂ©cemment l’ADN d’autres Archaea methanogĂšnes et d’Archaea non-methanogĂšnes a Ă©tĂ© dĂ©tectĂ© dans des selles humaines, y compris des sĂ©quences indiquant la prĂ©sence d’espĂšces appartenant Ă  un nouvel ordre de mĂ©thanogĂšnes n’ayant aucun reprĂ©sentant cultivĂ©. La connaissance actuelle sur la diversitĂ© de ces methanogĂšnes chez l’homme et sur leurs effets potentiels sur la santĂ© humaine est en grande partie basĂ©e sur les techniques de dĂ©tection de l’ADN par PCR et mĂ©tagĂ©nomique. Ces techniques fondĂ©es sur la dĂ©tection de l’ADN ribosomal 16S et du gĂšne mcrA codant la sous-unitĂ© alpha du methyl-coenzyme M reductase, une enzyme clĂ© dans le processus de mĂ©thanogenĂšse, ont montrĂ© dans un premier temps que M. smithii Ă©tait dĂ©tectĂ© chez moins de 50% des individus et M. stadtmanae chez 0-20 % seulement. Ces rĂ©sultats Ă©taient contradictoires avec le rĂŽle de la mĂ©thanogenĂšse dans l’élimination des acides et d’autres produits du processus digestion, et nous avons Ă©mis l’hypothĂšse que ces rĂ©sultats pouvaient ne pas reflĂ©ter la quantitĂ© rĂ©elle des mĂ©thanogĂšnes dans le tube digestif humain, suggĂ©rant la mise au point de nouvelles mĂ©thodes de dĂ©tection molĂ©culaire et de culture adaptĂ©es aux caractĂ©ristiques de ces organismes fastidieux. Dans ce travail, nous nous sommes fixĂ©s comme premier objectif de mettre au point une mĂ©thode molĂ©culaire permettant de dĂ©tecter M. smithii chez tous les individus testĂ©s et nous avons mis au point un protocole d’extraction et de dĂ©tection d’ADN d’Archaea Ă  partir des selles en se basant sur les gĂ©nomes sĂ©quencĂ©s de M. smithii et M. stadtmanae. Ce protocole nous a permis de dĂ©tecter M. smithii chez 95,5% des individus et M. stadtmanae chez 29,4% des individus. En ce basant sur ce protocole et moyennant une approche molĂ©culaire basĂ©e sur une PCR universelle de l’ADN ribosomal 16S des mĂ©thanogĂšnes, le sĂ©quençage et le clonage, nous avons Ă©galement dĂ©tectĂ© chez 4% de la population, une sĂ©quence correspondant Ă  un phylotype (FJ823135) ayant dĂ©jĂ  Ă©tĂ© rapportĂ© comme reprĂ©sentant un nouvel ordre de mĂ©thanogĂšnes. A partir de lĂ , nous avons choisi un prĂ©lĂšvement de selle susceptible de contenir le plus fort ratio de FJ823135/ M. smithii et nous avons rĂ©ussi Ă  isoler et Ă  cultiver une nouvelle Archaea que nous avons nommĂ© Methanomassiliicoccus luminyensis, premier reprĂ©sentant cultivĂ© d’un nouvel ordre de mĂ©thanogĂšnes et la quatriĂšme Archaea cultivĂ©e chez l’homme. M. luminyensis et M. stadtmanae prĂ©sentent des mĂ©tabolismes similaires en rĂ©duisant le mĂ©thanol en mĂ©thane en utilisant l’hydrogĂšne comme donneur d’électrons, cette observation nous a incitĂ© Ă  tester l’addition de tungstate de sĂ©lĂ©nium, requis pour la croissance de M. luminyensis, dans une culture M. stadtmanae, et nous avons observĂ© une accĂ©lĂ©ration de la vitesse de croissance de M. stadtmanae par un facteur 3. Nous avons ensuite Ă©tudiĂ© la sensibilitĂ© des mĂ©thanogĂšnes isolĂ©s chez l’homme aux antibiotiques et Ă©tabli qu’ils sont seulement sensibles Ă  des molĂ©cules efficaces contre les bactĂ©ries et les eucaryotes, ceci Ă©tant en accord avec leur position phylogĂ©nĂ©tique en tant qu’un des quatre domaines de la vie. [...]Methanogenic Archaea are environmental organisms which have also been associated to mammals mucosa. In humans these microorganisms have been detected in the vaginal, intestinal and oral mucosa. These organisms are strict anaerobes and their culture conditions remains fastidious and poorly known. In fact only three methanogens have been isolated from human samples, both Methanobrevibater smithii and Methanosphaera stadtmanae from stool and Methanobrevibater oralis from dental plaque. Current knowledge on the diversity of methanogens in humans and their potential effects on human health were largely based on DNA detection methods as PCR and metagenomics. These techniques based on 16S rDNA and mcrA gene (encoding the alpha subunit of methyl coenzyme-M-reductase, a key enzyme in methanogenesis process) detection, showed that M. smithii was the most present in man and that the presence of M. stadtmanae was transient. Recently, the DNA of other methanogenic and non- methanogenic Archaea, has been detected in human feces, including sequences indicating the presence of non-cultured species belonging to potential new order of methanogens with no cultured representative. However, these studies detected M. smithii with variable prevalence in less than half of the tested individuals and no M. stadtmanae; such results does not confirm the paramount role of methanogenesis in preventing the accumulation of acids and other reaction end products during the digestion process, and can not reflect the actual amount of these two methanogens in the human digestive tract because of their specific association with the intestinal mucosa. Therefore, these studies pointed that the diversity of methanogens in humans has been underestimated suggesting the development of new molecular detection methods and cultural approaches adapted these fastidious organisms. In this work, we preset as first criteria, the detection of M. smithii in all tested individuals, therefore we developed an improved protocol for archaeal DNA extraction and detection from stool based on sequenced genomes of M. smithii and M. stadtmanae, this protocol allowed us to detect the first one DNA in 95.5% tested individuals and the second in a prevalence of 29.4%. Based on this protocol and through molecular approach based on universal amplification of methanogenic 16S rDNA, sequencing and cloning, we detected in 4% of the tested population, a sequence corresponding to a new phylotype (FJ823135) that has been previously reported and proposed as a representative of a new order of methanogens. From there, we chose one stool specimen susceptible to contain the highest amount of FJ823135 and successfully isolated Methanomassiliicoccus luminyensis B10T clone, the first cultured representative of a new order of methanogens and the fourth Archaea cultured in humans.This archaeon exhibited a similar type of metabolism to that of M. stadtmanae by oxidizing H2 and reducing methanol to methane but require tungstate-selenite, an element essential for its growth, this fact prompted us testing tungstate-selenite addition on M. stadtmanae growth and establishing that it was strongly stimulatory with a growth rate three times faster. We have thereafter studied the sensitivity of methanogens isolated from humans to antibiotics and established that they are susceptible only to molecules also effective against both Bacteria and Eucarya, in agreement with their phylogenetic location as a unique domain of life. The aim of the latter part of this work was to test the effectiveness of MALDI-TOF mass spectrometry identification of environmental and host-associated Archaea. The obtained data indicated that that MALDI-TOF-MS protein profiling is an efficient first-line step for the rapid phenotypic identification of cultured Archaea organisms including host-associated ones. [...

    Isolement d'une nouvelle Archaea methanogĂšne "Methanomassiliicoccus luminyensis" Ă  partir du tube digestif humain

    Get PDF
    Les Archaea methanogĂšnes sont des organismes environnementaux ayant Ă©tĂ© Ă©galement dĂ©tectĂ©s dans certaines flores associĂ©es aux muqueuses des mammifĂšres. Chez l’homme ces microorganismes ont Ă©tĂ© associĂ©s avec les muqueuses intestinale, vaginale et orale. Ces organismes sont des procaryotes anaĂ©robies stricts et leurs conditions de culture restent fastidieuses et trĂšs mal connues. En effet, uniquement trois Archaea methanogĂšnes ont Ă©tĂ© cultivĂ©es Ă  partir de prĂ©lĂšvements humains, Methanobrevibater smithii et Methanosphaera stadtmanae Ă  partir des selles puis Methanobrevibater oralis Ă  partir de la plaque dentaire. RĂ©cemment l’ADN d’autres Archaea methanogĂšnes et d’Archaea non-methanogĂšnes a Ă©tĂ© dĂ©tectĂ© dans des selles humaines, y compris des sĂ©quences indiquant la prĂ©sence d’espĂšces appartenant Ă  un nouvel ordre de mĂ©thanogĂšnes n’ayant aucun reprĂ©sentant cultivĂ©. La connaissance actuelle sur la diversitĂ© de ces methanogĂšnes chez l’homme et sur leurs effets potentiels sur la santĂ© humaine est en grande partie basĂ©e sur les techniques de dĂ©tection de l’ADN par PCR et mĂ©tagĂ©nomique. Ces techniques fondĂ©es sur la dĂ©tection de l’ADN ribosomal 16S et du gĂšne mcrA codant la sous-unitĂ© alpha du methyl-coenzyme M reductase, une enzyme clĂ© dans le processus de mĂ©thanogenĂšse, ont montrĂ© dans un premier temps que M. smithii Ă©tait dĂ©tectĂ© chez moins de 50% des individus et M. stadtmanae chez 0-20 % seulement. Ces rĂ©sultats Ă©taient contradictoires avec le rĂŽle de la mĂ©thanogenĂšse dans l’élimination des acides et d’autres produits du processus digestion, et nous avons Ă©mis l’hypothĂšse que ces rĂ©sultats pouvaient ne pas reflĂ©ter la quantitĂ© rĂ©elle des mĂ©thanogĂšnes dans le tube digestif humain, suggĂ©rant la mise au point de nouvelles mĂ©thodes de dĂ©tection molĂ©culaire et de culture adaptĂ©es aux caractĂ©ristiques de ces organismes fastidieux. Dans ce travail, nous nous sommes fixĂ©s comme premier objectif de mettre au point une mĂ©thode molĂ©culaire permettant de dĂ©tecter M. smithii chez tous les individus testĂ©s et nous avons mis au point un protocole d’extraction et de dĂ©tection d’ADN d’Archaea Ă  partir des selles en se basant sur les gĂ©nomes sĂ©quencĂ©s de M. smithii et M. stadtmanae. Ce protocole nous a permis de dĂ©tecter M. smithii chez 95,5% des individus et M. stadtmanae chez 29,4% des individus. En ce basant sur ce protocole et moyennant une approche molĂ©culaire basĂ©e sur une PCR universelle de l’ADN ribosomal 16S des mĂ©thanogĂšnes, le sĂ©quençage et le clonage, nous avons Ă©galement dĂ©tectĂ© chez 4% de la population, une sĂ©quence correspondant Ă  un phylotype (FJ823135) ayant dĂ©jĂ  Ă©tĂ© rapportĂ© comme reprĂ©sentant un nouvel ordre de mĂ©thanogĂšnes. A partir de lĂ , nous avons choisi un prĂ©lĂšvement de selle susceptible de contenir le plus fort ratio de FJ823135/ M. smithii et nous avons rĂ©ussi Ă  isoler et Ă  cultiver une nouvelle Archaea que nous avons nommĂ© Methanomassiliicoccus luminyensis, premier reprĂ©sentant cultivĂ© d’un nouvel ordre de mĂ©thanogĂšnes et la quatriĂšme Archaea cultivĂ©e chez l’homme. M. luminyensis et M. stadtmanae prĂ©sentent des mĂ©tabolismes similaires en rĂ©duisant le mĂ©thanol en mĂ©thane en utilisant l’hydrogĂšne comme donneur d’électrons, cette observation nous a incitĂ© Ă  tester l’addition de tungstate de sĂ©lĂ©nium, requis pour la croissance de M. luminyensis, dans une culture M. stadtmanae, et nous avons observĂ© une accĂ©lĂ©ration de la vitesse de croissance de M. stadtmanae par un facteur 3. Nous avons ensuite Ă©tudiĂ© la sensibilitĂ© des mĂ©thanogĂšnes isolĂ©s chez l’homme aux antibiotiques et Ă©tabli qu’ils sont seulement sensibles Ă  des molĂ©cules efficaces contre les bactĂ©ries et les eucaryotes, ceci Ă©tant en accord avec leur position phylogĂ©nĂ©tique en tant qu’un des quatre domaines de la vie. [...]Methanogenic Archaea are environmental organisms which have also been associated to mammals mucosa. In humans these microorganisms have been detected in the vaginal, intestinal and oral mucosa. These organisms are strict anaerobes and their culture conditions remains fastidious and poorly known. In fact only three methanogens have been isolated from human samples, both Methanobrevibater smithii and Methanosphaera stadtmanae from stool and Methanobrevibater oralis from dental plaque. Current knowledge on the diversity of methanogens in humans and their potential effects on human health were largely based on DNA detection methods as PCR and metagenomics. These techniques based on 16S rDNA and mcrA gene (encoding the alpha subunit of methyl coenzyme-M-reductase, a key enzyme in methanogenesis process) detection, showed that M. smithii was the most present in man and that the presence of M. stadtmanae was transient. Recently, the DNA of other methanogenic and non- methanogenic Archaea, has been detected in human feces, including sequences indicating the presence of non-cultured species belonging to potential new order of methanogens with no cultured representative. However, these studies detected M. smithii with variable prevalence in less than half of the tested individuals and no M. stadtmanae; such results does not confirm the paramount role of methanogenesis in preventing the accumulation of acids and other reaction end products during the digestion process, and can not reflect the actual amount of these two methanogens in the human digestive tract because of their specific association with the intestinal mucosa. Therefore, these studies pointed that the diversity of methanogens in humans has been underestimated suggesting the development of new molecular detection methods and cultural approaches adapted these fastidious organisms. In this work, we preset as first criteria, the detection of M. smithii in all tested individuals, therefore we developed an improved protocol for archaeal DNA extraction and detection from stool based on sequenced genomes of M. smithii and M. stadtmanae, this protocol allowed us to detect the first one DNA in 95.5% tested individuals and the second in a prevalence of 29.4%. Based on this protocol and through molecular approach based on universal amplification of methanogenic 16S rDNA, sequencing and cloning, we detected in 4% of the tested population, a sequence corresponding to a new phylotype (FJ823135) that has been previously reported and proposed as a representative of a new order of methanogens. From there, we chose one stool specimen susceptible to contain the highest amount of FJ823135 and successfully isolated Methanomassiliicoccus luminyensis B10T clone, the first cultured representative of a new order of methanogens and the fourth Archaea cultured in humans.This archaeon exhibited a similar type of metabolism to that of M. stadtmanae by oxidizing H2 and reducing methanol to methane but require tungstate-selenite, an element essential for its growth, this fact prompted us testing tungstate-selenite addition on M. stadtmanae growth and establishing that it was strongly stimulatory with a growth rate three times faster. We have thereafter studied the sensitivity of methanogens isolated from humans to antibiotics and established that they are susceptible only to molecules also effective against both Bacteria and Eucarya, in agreement with their phylogenetic location as a unique domain of life. The aim of the latter part of this work was to test the effectiveness of MALDI-TOF mass spectrometry identification of environmental and host-associated Archaea. The obtained data indicated that that MALDI-TOF-MS protein profiling is an efficient first-line step for the rapid phenotypic identification of cultured Archaea organisms including host-associated ones. [...

    Tungsten-enhanced growth of <it>Methanosphaera stadtmanae</it>

    No full text
    Abstract Background The methanogenic Archaea Methanosphaera stadtmanae has been detected in the human gut microbiota by both culture and culture-independent methods. Its growth reaches an exponential phase after 5 to 7-day culture in medium 322 (10% vol). Our recent successful isolation of Methanomassiliicoccus luminyensis, a tungstate-selenite-requiring Archaea sharing similar metabolism characteristics with M. stadtmanae prompted us to study the effects of tungsten and selenium on M. stadtmanae growth. Findings Addition of 0.2 mg/L sodium tungstate to medium 322 yielded, 48 hours after inoculation, a growth rate equivalent to that obtained after 6 days with control culture as measured by methane monitoring and optical density measurement. Addition of 50 ÎŒg/mL sodium selenate had no effect on M. stadtmanae growth. Quantitative real-time PCRs targeting the M. stadtmanae 16S rRNA confirmed these data. Conclusions These data provide new information regarding the poorly known nutritional requirements of the human gut colonizing organismsM. stadtmanae. Adding sodium tungstate to basal medium may facilitate phenotypic characterization of this organism and additionally aid the isolation of new Archaeafrom complex host microbiota.</p
    corecore