34 research outputs found

    Dichotomy between the hole and electrons behavior in the multiband FeSe probed by ultra high magnetic fields

    Get PDF
    Magnetoresistivity \r{ho}xx and Hall resistivity \r{ho}xy in ultra high magnetic fields up to 88T are measured down to 0.15K to clarify the multiband electronic structure in high-quality single crystals of superconducting FeSe. At low temperatures and high fields we observe quantum oscillations in both resistivity and Hall effect, confirming the multiband Fermi surface with small volumes. We propose a novel and independent approach to identify the sign of corresponding cyclotron orbit in a compensated metal from magnetotransport measurements. The observed significant differences in the relative amplitudes of the quantum oscillations between the \r{ho}xx and \r{ho}xy components, together with the positive sign of the high-field \r{ho}xy , reveal that the largest pocket should correspond to the hole band. The low-field magnetotransport data in the normal state suggest that, in addition to one hole and one almost compensated electron bands, the orthorhombic phase of FeSe exhibits an additional tiny electron pocket with a high mobility.Comment: Latex, 4 pages (2 figures, 1 table), and supplemental materia

    A 31T split-pair pulsed magnet for single crystal x-ray diffraction at low temperature

    Get PDF
    We have developed a pulsed magnet system with panoramic access for synchrotron x-ray diffraction in magnetic fields up to 31T and at low temperature down to 1.5 K. The apparatus consists of a split-pair magnet, a liquid nitrogen bath to cool the pulsed coil, and a helium cryostat allowing sample temperatures from 1.5 up to 250 K. Using a 1.15MJ mobile generator, magnetic field pulses of 60 ms length were generated in the magnet, with a rise time of 16.5 ms and a repetition rate of 2 pulses/hour at 31 T. The setup was validated for single crystal diffraction on the ESRF beamline ID06

    Dynamics of nanosecond laser pulse propagation and of associated instabilities in a magnetized underdense plasma

    Full text link
    The propagation and energy coupling of intense laser beams in plasmas are critical issues in laser-driven inertial confinement fusion. Applying magnetic fields to such a setup has been evoked to enhance fuel confinement and heating, and mitigate laser energy losses. Here we report on experimental measurements demonstrating improved transmission and increased smoothing of a high-power laser beam propagating in an underdense magnetized plasma. We also measure enhanced backscattering, which our simulations show is due to hot electrons confinement, thus leading to reduced target preheating

    Universal quantum oscillations in the underdoped cuprate superconductors

    Full text link
    The metallic state of the underdoped high-Tc cuprates has remained an enigma: How may seemingly disconnected Fermi surface segments, observed in zero magnetic field as a result of the opening of a partial gap (the pseudogap), possess conventional quasiparticle properties? How do the small Fermi-surface pockets evidenced by the observation of quantum oscillations (QO) emerge as superconductivity is suppressed in high magnetic fields? Such QO, discovered in underdoped YBa2Cu3O6.5 (Y123) and YBa2Cu4O8 (Y124), signify the existence of a conventional Fermi surface (FS). However, due to the complexity of the crystal structures of Y123 and Y124 (CuO2 double-layers, CuO chains, low structural symmetry), it has remained unclear if the QO are specific to this particular family of cuprates. Numerous theoretical proposals have been put forward to explain the route toward QO, including materials-specific scenarios involving CuO chains and scenarios involving the quintessential CuO2 planes. Here we report the observation of QO in underdoped HgBa2CuO4+{\delta} (Hg1201), a model cuprate superconductor with individual CuO2 layers, high tetragonal symmetry, and no CuO chains. This observation proves that QO are a universal property of the underdoped CuO2 planes, and it opens the door to quantitative future studies of the metallic state and of the Fermi-surface reconstruction phenomenon in this structurally simplest cuprate.Comment: 17 pages, 5 figure

    Optimization of large multiple coil systems for pulsed magnets

    Get PDF
    International audienceVery high pulsed magnetic fields can be generated more economically using a system of multiple coils, with a high-energy, limited-power pulse generator providing the background field for a smaller inner coil, energized in its turn, but for a much shorter pulse duration, with a very high-power, limited-energy generator. Because of the increased number of parameters in the design of multi-coils, systematic insight into their mutual dependence is helpful in order to converge to an optimized design.In this paper we will discuss strategies to determine the optimum choice for the design of inner- and outer-coil and how to optimize their design in relation to the type of pulse generator used. In particular, we will consider energy-limited capacitor banks and power-limited supplies. The approach will use scaling arguments and modeling tools as the 'Pulsed Magnet Design Software' (PMDS) package, developed at the Katholieke Universiteit Leuven and Huazhong University of Science and Technology.Optimization of coil systems is demonstrated with the example of the successful 87 T pulsed dual-coil system in Dresden
    corecore