46 research outputs found

    A MODEL OF CREATINE DEFICIENCY SYNDROMES IN 3D BRAIN CELL CULTURES BY KNOCKDOWN OF GAMT AND SLC6A8 GENES

    Get PDF
    La créatine joue un rôle essentiel dans le métabolisme cellulaire par sa conversion, par la creatine kinase, en phosphocreatine permettant la régénération de l'ATP. La synthèse de créatine, chez les mammifères, s'effectue par une réaction en deux étapes impliquant Γ arginine: glycine amidinotransférase (AGAT) et la guanidinoacétate méthyltransférase (GAMT). L'entrée de créatine dans les cellules s'effectue par son transporteur, SLC6A8. Les déficiences en créatine, dues au déficit en GAMT, AGAT ou SLC6A8, sont fréquentes et caractérisées par une absence ou une forte baisse de créatine dans le système nerveux central. Alors qu'il est connu que AGAT, GAMT et SLC6A8 sont exprimés par le cerveau, les conséquences des déficiences en créatine sur les cellules nerveuses sont peu comprises. Le but de ce travail était de développer de nouveaux modèles expérimentaux des déficiences en Cr dans des cultures 3D de cellules nerveuses de rat en agrégats au moyen de l'interférence à l'ARN appliquée aux gènes GAMT et SLC6A8. Des séquences interférentes (shRNAs) pour les gènes GAMT et SLC6A8 ont été transduites par des vecteurs viraux AAV (virus adéno-associés), dans les cellules nerveuses en agrégats. Nous avons ainsi démontré une baisse de l'expression de GAMT au niveau protéique (mesuré par western blot), et ARN messager (mesuré par qPCR) ainsi qu'une variation caractérisitique de créatine et guanidinoacétate (mesuré par spectrométrie de masse). Après avoir validé nos modèles, nous avons montré que les knockdown de GAMT ou SLC6A8 affectent le développement des astrocytes et des neurones ou des oligodendrocytes et des astrocytes, respectivement, ainsi qu'une augmentation de la mort cellulaire et des modifications dans le pattern d'activation des voies de signalisation impliquant caspase 3 et p38 MAPK, ayant un rôle dans le processus d'apoptose. - Creatine plays essential roles in energy metabolism by the interconversion, by creatine kinase, to its phosphorylated analogue, phosphocreatine, allowing the regeneration of ATP. Creatine is synthesized in mammals by a two step mechanism involving arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT). Creatine is taken up by cells by a specific transporter, SLC6A8. Creatine deficiency syndromes, due to defects in GAMT, AGAT and SLC6A8, are among the most frequent inborn errors of metabolism, and are characterized by an absence or a severe decrease of creatine in central nervous system, which is the main tissue affected. While it is known that AGAT, GAMT and SLC6A8 are expressed in CNS, many questions remain on the specific effects of AGAT, GAMT and SLC6A8 deficiencies on brain cells. Our aim was to develop new experimental models of creatine deficiencies by knockdown of GAMT and SLC6A8 genes by RNAi in 3D organotypic rat brain cell cultures in aggregates. Specific shRNAs for the GAMT and SLC6A8 genes were transduced in brain cell aggregates by adeno-associated viruses (AAV). The AAV-transduced shRNAs were able to efficiently knockdown the expression of our genes of interest, as shown by a strong decrease of protein by western blotting, a decrease of mRNA by qPCR or characteristic variations of creatine and guanidinoacetate by tandem mass spectrometry. After having validated our experimental models, we have also shown that GAMT and SLC6A8 knockdown affected the development of astrocytes and neurons or oligodendrocytes and astrocytes, respectively. We also observed an increase of cell death and variations in activation pattern of caspase 3 and p38 MAPK pathways, involved in apoptosis, in our experimental model

    Mild guanidinoacetate increase under partial guanidinoacetate methyltransferase deficiency strongly affects brain cell development.

    Get PDF
    Among cerebral creatine deficiency syndromes, guanidinoacetate methyltransferase (GAMT) deficiency can present the most severe symptoms, and is characterized by neurocognitive dysfunction due to creatine deficiency and accumulation of guanidinoacetate in the brain. So far, every patient was found with negligible GAMT activity. However, GAMT deficiency is thought under-diagnosed, in particular due to unforeseen mutations allowing sufficient residual activity avoiding creatine deficiency, but enough guanidinoacetate accumulation to be toxic. With poorly known GAA-specific neuropathological mechanisms, we developed an RNAi-induced partial GAMT deficiency in organotypic rat brain cell cultures. As expected, the 85% decrease of GAMT protein was insufficient to cause creatine deficiency, but generated guanidinoacetate accumulation causing axonal hypersprouting and decrease in natural apoptosis, followed by induction of non-apoptotic cell death. Specific guanidinoacetate-induced effects were completely prevented by creatine co-treatment. We show that guanidinoacetate accumulation without creatine deficiency is sufficient to affect CNS development, and suggest that additional partial GAMT deficiencies, which may not show the classical brain creatine deficiency, may be discovered through guanidinoacetate measurement

    A Thalamic Reticular Circuit for Head Direction Cell Tuning and Spatial Navigation.

    Get PDF
    As we navigate in space, external landmarks and internal information guide our movement. Circuit and synaptic mechanisms that integrate these cues with head-direction (HD) signals remain, however, unclear. We identify an excitatory synaptic projection from the presubiculum (PreS) and the multisensory-associative retrosplenial cortex (RSC) to the anterodorsal thalamic reticular nucleus (TRN), so far classically implied in gating sensory information flow. In vitro, projections to TRN involve AMPA/NMDA-type glutamate receptors that initiate TRN cell burst discharge and feedforward inhibition of anterior thalamic nuclei. In vivo, chemogenetic anterodorsal TRN inhibition modulates PreS/RSC-induced anterior thalamic firing dynamics, broadens the tuning of thalamic HD cells, and leads to preferential use of allo- over egocentric search strategies in the Morris water maze. TRN-dependent thalamic inhibition is thus an integral part of limbic navigational circuits wherein it coordinates external sensory and internal HD signals to regulate the choice of search strategies during spatial navigation

    Quantifying Infra-slow Dynamics of Spectral Power and Heart Rate in Sleeping Mice.

    Get PDF
    Three vigilance states dominate mammalian life: wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. As more neural correlates of behavior are identified in freely moving animals, this three-fold subdivision becomes too simplistic. During wakefulness, ensembles of global and local cortical activities, together with peripheral parameters such as pupillary diameter and sympathovagal balance, define various degrees of arousal. It remains unclear the extent to which sleep also forms a continuum of brain states-within which the degree of resilience to sensory stimuli and arousability, and perhaps other sleep functions, vary gradually-and how peripheral physiological states co-vary. Research advancing the methods to monitor multiple parameters during sleep, as well as attributing to constellations of these functional attributes, is central to refining our understanding of sleep as a multifunctional process during which many beneficial effects must be executed. Identifying novel parameters characterizing sleep states will open opportunities for novel diagnostic avenues in sleep disorders. We present a procedure to describe dynamic variations of mouse non-REM sleep states via the combined monitoring and analysis of electroencephalogram (EEG)/electrocorticogram (ECoG), electromyogram (EMG), and electrocardiogram (ECG) signals using standard polysomnographic recording techniques. Using this approach, we found that mouse non-REM sleep is organized into cycles of coordinated neural and cardiac oscillations that generate successive 25-s intervals of high and low fragility to external stimuli. Therefore, central and autonomic nervous systems are coordinated to form behaviorally distinct sleep states during consolidated non-REM sleep. We present surgical manipulations for polysomnographic (i.e., EEG/EMG combined with ECG) monitoring to track these cycles in the freely sleeping mouse, the analysis to quantify their dynamics, and the acoustic stimulation protocols to assess their role in the likelihood of waking up. Our approach has already been extended to human sleep and promises to unravel common organizing principles of non-REM sleep states in mammals

    Thalamic reticular control of local sleep in mouse sensory cortex.

    Get PDF
    Sleep affects brain activity globally, but many cortical sleep waves are spatially confined. Local rhythms serve cortical area-specific sleep needs and functions; however, mechanisms controlling locality are unclear. We identify the thalamic reticular nucleus (TRN) as a source for local, sensory-cortex-specific non-rapid-eye-movement sleep (NREMS) in mouse. Neurons in optogenetically identified sensory TRN sectors showed stronger repetitive burst discharge compared to non-sensory TRN cells due to higher activity of the low-threshold Ca <sup>2+</sup> channel Ca <sub>V</sub> 3.3. Major NREMS rhythms in sensory but not non-sensory cortical areas were regulated in a Ca <sub>V</sub> 3.3-dependent manner. In particular, NREMS in somatosensory cortex was enriched in fast spindles, but switched to delta wave-dominated sleep when Ca <sub>V</sub> 3.3 channels were genetically eliminated or somatosensory TRN cells chemogenetically hyperpolarized. Our data indicate a previously unrecognized heterogeneity in a powerful forebrain oscillator that contributes to sensory-cortex-specific and dually regulated NREMS, enabling local sleep regulation according to use- and experience-dependence

    Investigating particle acceleration dynamics in interpenetrating magnetized collisionless super-critical shocks

    Full text link
    Colliding collisionless shocks appear in a great variety of astrophysical phenomena and are thought to be possible sources of particle acceleration in the Universe. We have previously investigated particle acceleration induced by single super-critical shocks (whose magnetosonic Mach number is higher than the critical value of 2.7) (Yao et al. 2021, 2022), as well as the collision of two sub-critical shocks (Fazzini et al. 2022). Here, we propose to make measurements of accelerated particles from interpenetrating super-critical shocks to observe the ''phase-locking effect'' (Fazzini et al. 2022) from such an event. This effect is predicted to significantly boost the energy spectrum of the energized ions compared to a single supercritical collisionless shock. We thus anticipate that the results obtained in the proposed experiment could have a significant impact on our understanding of one type of primary source (acceleration of thermal ions as opposed to secondary acceleration mechanisms of already energetic ions) of ion energization of particles in the Universe

    High frequency magnetic oscillations of the organic metal θ\theta-(ET)4_4ZnBr4_4(C6_6H4_4Cl2_2) in pulsed magnetic field of up to 81 T

    Full text link
    De Haas-van Alphen oscillations of the organic metal θ\theta-(ET)4_4ZnBr4_4(C6_6H4_4Cl2_2) are studied in pulsed magnetic fields up to 81 T. The long decay time of the pulse allows determining reliable field-dependent amplitudes of Fourier components with frequencies up to several kiloteslas. The Fourier spectrum is in agreement with the model of a linear chain of coupled orbits. In this model, all the observed frequencies are linear combinations of the frequency linked to the basic orbit α\alpha and to the magnetic-breakdown orbit β\beta.Comment: 6 pages, 4 figure

    Dynamics of nanosecond laser pulse propagation and of associated instabilities in a magnetized underdense plasma

    Full text link
    The propagation and energy coupling of intense laser beams in plasmas are critical issues in laser-driven inertial confinement fusion. Applying magnetic fields to such a setup has been evoked to enhance fuel confinement and heating, and mitigate laser energy losses. Here we report on experimental measurements demonstrating improved transmission and increased smoothing of a high-power laser beam propagating in an underdense magnetized plasma. We also measure enhanced backscattering, which our simulations show is due to hot electrons confinement, thus leading to reduced target preheating

    Creatine, central nervous system and creatine deficiency syndromes

    Get PDF
    It was long thought that most of brain creatine was of peripheral origin. However, recentworks have demonstrated that creatine crosses blood-brain barrier only with poor efficiency, and thatCNS must ensure parts of its creatine needs by its own creatine synthesis pathway, thank to the brainexpression of AGAT and GAMT (creatine synthesis) and SLC6A8 (creatine transporter). This newunderstanding of creatine metabolism and transport in CNS allows a better comprehension of creatinedeficiency syndromes, which are due to deficiencies in AGAT, GAMT and SLC6A8 and mainly affectthe brain of patients who show severe neurodevelopmental delay and present neurological symptomsin early infancy
    corecore