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Abstract: It was long thought that most of brain creatine was of peripheral origin. However, recent 

works have demonstrated that creatine crosses blood-brain barrier only with poor efficiency, and that 

CNS must ensure parts of its creatine needs by its own creatine synthesis pathway, thank to the brain 

expression of AGAT and GAMT (creatine synthesis) and SLC6A8 (creatine transporter). This new 

understanding of creatine metabolism and transport in CNS allows a better comprehension of creatine 

deficiency syndromes, which are due to deficiencies in AGAT, GAMT and SLC6A8 and mainly affect 

the brain of patients who show severe neurodevelopmental delay and present neurological symptoms 

in early infancy. 
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1 Introduction 
The creatine (Cr) / phosphocreatine (PCr) / 

creatine kinase (CK) system plays essential roles 

to maintain the high energy levels necessary for 

brain development and functions, through 

regeneration and buffering of ATP levels [21,72]. 

The Cr/PCr/CK system also allows the shuttle of 

high-energy phosphates from mitochondria to 

their cytoplasmic sites of utilization [70]. Cr was 

also suggested recently as true neurotransmitter 

and one of the main central nervous system 

(CNS) osmolytes [3,9]. In mammals, pools of Cr 

are maintained through uptake from diet and 

endogenous synthesis. Cr biosynthesis involves 

L-arginine:glycine amidinotransferase (AGAT) 

yielding guanidinoacetate (GAA) from arginine 

and glycine,  and guanidinoacetate methyl-

transferase (GAMT), yielding Cr from GAA. Cr 

is distributed by blood to tissues, where cells take 

it up by a specific transporter, SLC6A8, also 

called CRT1, CT1, CreaT or CRT [72].  

It has long been thought that most, if not all, 

cerebral Cr was of peripheral origin [72]. 

However, AGAT and GAMT are expressed in 

CNS and brain cells synthesize their own Cr 

[11,20]. In contrast, while SLC6A8 is expressed 

by microcapillary endothelial cells (MCEC) at 

blood-brain barrier (BBB), allowing CNS to 

import Cr from periphery, it is absent from 

astrocytes and particularly from their feet lining 

MCEC [11,47,65]. This suggested that BBB has 

a limited permeability for peripheral Cr, and that 

CNS must supply an important part of its Cr 

needs by endogenous synthesis rather than on 

exclusive supply from the blood [6,11,18]. 

Recent data also suggest that in the brain, the Cr 

synthesis pathway may be dissociated as it is in 

periphery, the intermediate GAA being 

transported through SLC6A8 from AGAT- to 

GAMT-expressing cells for Cr synthesis to occur 

in CNS [15]. 

Cr deficiency syndromes are caused by 

mutations in AGAT, GAMT and SLC6A8 genes 

[38,53,62]. Their common phenotype is an 

almost complete lack of Cr in CNS, which 

appears as the main organ affected in these 

primary Cr deficiencies. Patients develop severe 

neurodevelopmental delay and present 

neurological symptoms in early infancy, like 

mental retardation, delays in speech acquisition 

or epilepsy [63]. Oral Cr supplementation 

strongly improves the neurological status of 

AGAT- and GAMT-deficient patients 

[5,55,58,61], while this treatment is inefficient on 

SLC6A8-deficient patients [4,7,51]. Secondary 

Cr deficiencies are also observed in other CNS 

pathological states, like stroke, hyperammonemic 

states or gyrate atrophy of the choroid and retina 

(GA) [6]. 
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This review is focused on the latest data on Cr 

synthesis and transport in CNS, in order to 

delineate a comprehensive frame on Cr 

metabolism and transport in the brain, both in 

normal and in the Cr-deficient conditions 

characteristic of Cr deficiency syndromes. 

 

2 Creatine in the brain 
 

2.1 Functions of creatine in CNS 
The Cr/PCr/CK system plays essential roles to 

maintain the high energy phosphates levels 

necessary for CNS (maintenance of membrane 

potential and ions gradients, Ca
++

 homeostasis, 

neurotransmission, intracellular signaling 

systems as well as axonal and dendritic transport, 

axonal and dendritic growth) [6]. Apart of its 

main functions in energy, Cr was recently 

suggested as neurotransmitter or neuromodulator. 

Indeed, neurons can release Cr in an action 

potential-dependent manner [3], and a 

mechanism of Cr recapture from the synaptic 

cleft may exist through SLC6A8 [48]. Cr was 

also suggested as one of the essential CNS 

osmolytes [2,8], and as one potential appetite and 

weight regulator through action on specific 

hypothalamic nuclei [32]. 

 

2.2 AGAT, GAMT and SLC6A8 in CNS 

It has long been thought that most of brain Cr 

was of peripheral origin, be it taken from the diet 

or synthesized endogenously through AGAT and 

GAMT activities in kidney and liver respectively 

[21,72]. However, Cr is synthesized in the 

mammalian brain [50,69], in nerve cell lines as 

well as in primary and organotypic brain cell 

cultures [20,27,30]. AGAT and GAMT are 

expressed in all the main structures of the brain, 

in every main cell types (neurons, astrocytes and 

oligodendrocytes; [11,54,65]). Moreover, we 

have shown that in most region of the rat CNS, 

AGAT and GAMT rarely appear co-expressed 

within the same cell [15]. Organotypic rat 

cortical cultures, primary brain cell cultures 

(neuronal, glial or mixed) and neuroblastoma cell 

lines have a Cr transporter activity [3,16,44]. In 

vivo, mouse and rat CNS can take up Cr from the 

blood against its concentration gradient [47,49]. 

SLC6A8 is expressed throughout the main 

regions of the adult mammalian brain [11,42,65]. 

It was demonstrated that SLC6A8 is found in 

neurons and oligodendrocytes but, in contrast to 

AGAT and GAMT, cannot be detected in 

astrocytes [11], except for very rare ones in 

cerebellum [42]. In contrast to its absence in 

astrocytes lining microcapillaries, SLC6A8 is 

present in MCEC making BBB [11,47,65]. 

 

2.3 Brain creatine: endogenous synthesis 

or uptake from periphery? 
The discovery that SLC6A8 cannot be detected in 

astrocytes, particularly in their feet sheathing 

MCEC, made us suggest that in mature CNS, 

BBB has a limited permeability for Cr, despite 

SLC6A8 expression by MCEC and their capacity 

to import Cr [1,11,45,47,65]. In vivo data 

confirmed this hypothesis: the blood to brain 

transport of Cr through BBB is effective in rats 

and mice but is relatively inefficient [47,49], and 

long term treatment of AGAT- and GAMT-

deficient patients with high doses of Cr allows 

only a slow and in most cases partial 

replenishment of their brain Cr pools (see below) 

[55,63]. One strong argument in favor of the 

“brain endogenous Cr synthesis” hypothesis 

comes from Cr measures in the cerebrospinal 

fluid (CSF) of Cr-deficient patients (see below) 

[18]. SLC6A8 deficient patients present normal 

Cr levels in CSF, but are unable to import Cr 

from periphery [7,23,29,51]. In contrast, GAMT-

deficient patients show strongly decreased levels 

of Cr in CSF but are able to import Cr from the 

blood [57,62]. This also suggests that Cr 

synthesis in the brain might still remain 

operational, although very partially, under 

SLC6A8 deficiency, while it is completely 

blocked in AGAT and GAMT deficiencies. 

Endogenous synthesis, or a very efficient uptake 

from periphery, are the two ways available for 

the brain to secure Cr homeostasis for its energy 

and functions. As uptake from periphery does not 

appear efficient, CNS might privilege Cr 

endogenous synthesis. The brain capacity for Cr 

synthesis would thus depend on the efficient 

supply of arginine, the limiting substrate for Cr 

synthesis, from blood to CNS, and then also on 

local trafficking of arginine between brain cells. 

We and others have shown that cationic amino 

acid transporters (CATs) CAT1, CAT2(B) and 

CAT3 might fulfill these roles in the brain 

[10,17,35]. 

The hypothesis of endogenous Cr synthesis in 

the brain might seem contradictory with the in 

vivo characteristics of SLC6A8 deficiency (see 

below), which, despite AGAT and GAMT 

expression in CNS, presents an absence (or a 

very low level) of brain Cr by magnetic 

resonance spectroscopy (MRS) [53]. This 
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apparent contradiction is probably explained by 

our recent data on AGAT, GAMT and SLC6A8 

expression patterns in the brain. AGAT and 

GAMT are found in every CNS cell type [11], 

but appear rarely co-expressed within the same 

cell [15]. This suggests that to allow Cr synthesis 

in the brain, GAA must be transported from 

AGAT- to GAMT-expressing cells. This GAA 

transfer most probably occurs through SLC6A8, 

as shown in the same study by Cr and GAA 

competition studies and the use of stable isotope-

labeled GAA, demonstrating its uptake by brain 

cells followed by its conversion to Cr by GAMT 

activity [15]. These observations may explain the 

Cr absence in CNS of SLC6A8-deficient patient, 

despite normal expression of AGAT and GAMT 

in their brain [6,18]. Recent studies also 

demonstrate the potential role of SLC6A8 for 

GAA transport across BBB and in brain 

parenchymal cells [64,66].  
 

2.4 Cr in developmental versus adult CNS 
As described above, the adult (or mature) brain 

might privilege Cr endogenous synthesis versus 

uptake from periphery, due to low permeability 

of BBB for Cr and thank to the expression of 

AGAT and GAMT in CNS parenchyma. Fetal 

and perinatal (or immature) CNS probably 

behaves differently for its Cr needs. Fetal needs 

in Cr are partly supported by active transport of 

Cr from mother and embryo [28,36]. AGAT, 

GAMT and SLC6A8 are also well expressed 

during vertebrate embryogenesis, including in the 

brain [19,37,54]. We have shown that AGAT and 

GAMT are expressed in the whole developing 

CNS parenchyma [19]. However, their low level 

(GAMT in particular) at early developmental 

stages suggests that in contrast to adult brain, 

embryonic CNS depends predominantly on 

external Cr supply, be it from embryonic 

periphery or from maternal origin. This is 

coherent with SLC6A8 expression in the whole 

embryonic CNS already at early stages (E12.5 in 

rat), with particularly high levels in 

periventricular zone and choroid plexus, the 

predominant metabolic exchange zones of fetal 

CNS before microcapillary angiogenesis and 

differentiation of BBB [14,19]. 

 

3 Creatine deficiency syndromes 
CNS is the main organ affected in patients 

suffering from Cr deficiency syndromes, inborn 

errors of Cr biosynthesis and transport caused by 

AGAT, GAMT or SLC6A8 deficiency which are 

characterized by an absence or a severe decrease 

of Cr in CNS as measured by MRS [38,53,62]. 

As the prevalence of SLC6A8 deficiency was 

estimated at 2% of all X-linked mental 

retardations [52] and at 1% of males with mental 

retardation of unknown etiology [26], while all 

combined Cr deficiencies were estimated 

between 0.3% and 2.7% of all mental retardation 

[4,41], Cr deficiency syndromes appear as some 

of the most frequent inborn errors of metabolism 

(IEM). 
Cr-deficient patients present neurological 

symptoms in infancy, such as mental retardation 

and delays in speech acquisition; GAMT 

deficiency exhibits a more complex phenotype, 

including intractable epilepsy, extrapyramidal 

movement syndromes and abnormalities in basal 

ganglia [63]. The diverse phenotypic spectrum of 

neurological symptoms observed in Cr deficiency 

syndromes demonstrate the importance of Cr for 

psychomotor development and cognitive 

functions. The more complex phenotype of 

GAMT deficiency is probably due to the toxicity 

of brain GAA accumulation [56], which may 

occur through activation of GABAA receptors by 

GAA [46] or inhibition of the complex between 

Na
+
/K

+
-ATPase and CK [73]. Severe epilepsy is 

also observed sometimes in SLC6A8-deficient 

patients [43]. This may be due to the observed 

CNS GAA accumulation in some SLC6A8-

deficient patients [59], that could be caused by 

impairment of GAA transport through deficient 

SLC6A8, from AGAT- to GAMT-expressing 

brain cells (see below) [15]. 

AGAT- and GAMT-deficient patients can be 

treated by oral supplementation of Cr. While this 

strongly improves their neurological status and 

CNS development, very high doses of Cr must be 

used, and replenishment of cerebral Cr takes 

months and only results, in most cases, in partial 

restoration of cerebral Cr pools [5,33,38,61]. The 

pre-symptomatic treatment of AGAT- and 

GAMT-deficient patients appears to improve 

even more their clinical outcome [55]. For 

GAMT-deficient patients, combined arginine 

restriction and ornithine substitution coupled to 

Cr treatment decrease GAA and also improve 

clinical outcome [56,58]. However, despite 

improvement of clinical outcome by Cr 

supplementation, most AGAT- and GAMT-

deficient patients remain with CNS 

developmental problems. Oral supplementation 

of Cr is inefficient in replenishing brain Cr in 

SLC6A8-deficient patients, who remain with 
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mental retardation, severe speech impairment and 

progressive brain atrophy [7,23,29,51]. Attempts 

to treat SLC6A8-deficient patients with arginine 

and glycine as precursors of Cr gave encouraging 

results in two SLC6A8-deficient patients [25,71], 

while it failed to improve the neurological status 

of four others [31]. 

 

 

4 Secondary creatine deficiencies in 

CNS 
Several other CNS pathologies can lead to a 

secondary Cr deficiency in brain cells. Excess of 

ammonium (NH4
+
)

 
in CNS, as seen in pediatric 

patients under various acquired or inherited 

disorders like urea cycle diseases, can cause 

irreversible damages to the developing brain 

[13,22,40]. NH4
+ 

exposure generates a secondary 

Cr deficiency in brain cells [16,20], eventually 

leading to energy deficit, oxidative stress and cell 

death [12,13]. Ischemic stroke in CNS leads to a 

rapid diminution in brain total Cr (Cr + PCr), 

causing a decrease in high energy phosphates 

production which leads to a failure in most 

energy-dependent processes necessary for cell 

survival [39]. Gyrate atrophy of the choroid and 

retina, an IEM caused by mutations in ornithine 

-aminotransferase (OAT) [68], generates a 

secondary Cr deficiency [60] which in CNS may 

contribute to GA neurological symptoms [67]. 

 

5 Model for creatine synthesis and 

trafficking in CNS 
Altogether, (i) the absence of Cr within the brain 

of Cr-deficient patients, (ii) the CNS expression 

patterns of AGAT, GAMT and SLC6A8, (iii) the 

low permeability of BBB for Cr, and (iv) the 

brain levels of Cr and GAA both in normal and 

Cr-deficient conditions, lead us to propose the 

following concept for Cr synthesis and 

trafficking within CNS [6]. In normal conditions, 

SLC6A8 is expressed by MCEC, but not by the 

surrounding astrocytic feet, implying that limited 

amounts of Cr enter the brain through BBB. In 

most brain regions, brain cells express AGAT 

and GAMT in a cell-dissociated way, and GAA 

must be transported from AGAT- to GAMT-

expressing cells by SLC6A8 for Cr synthesis to 

occur. In AGAT and GAMT deficiency, no Cr 

can be synthesized within CNS, but SLC6A8 

expression in MCEC allows the limited entry of 

Cr within the brain, and thus their treatment by 

oral Cr and the partial replenishment of the brain 

Cr pools. The GAMT-deficient brain 

accumulates GAA. Cr transporter-deficient 

patients lack functional SLC6A8 on MCEC, and 

thus cannot be treated by oral Cr. Their 

endogenous CNS Cr synthesis pathway is also 

deficient, as in most brain regions, GAA cannot 

cross from AGAT- to GAMT-expressing cells 

due to their lack in functional SLC6A8. 

 

 

6 Creatine as therapeutic potential 

for brain diseases  
Troubles in CNS energy metabolism due to 

mitochondrial dysfunction, either from oxidative 

stress, mitochondrial DNA deletions, 

pathological mutations or altered mitochondria 

morphology, play critical roles in the progression 

of neurological diseases as a primary or 

secondary mechanism in neuronal death cascade 

[24]. Cr is known to play essential roles in 

stabilizing mitochondrial function and in 

decreasing neuronal cell death, and Cr 

supplementation was shown to improve the 

bioenergetic deficit associated with several brain 

pathologies, including Huntington’s, Parkinson’s 

and Alzheimer’s diseases, amyotrophic lateral 

sclerosis, stroke and hyperammonemia [6,34]. 

 

 

7 Conclusions 
Cr plays its main role in energy metabolism, 

allowing ATP regeneration through CK 

enzymatic activity. In recent years, new roles of 

Cr have been suggested in CNS, like a function 

of neuromodulator or even true neurotransmitter. 

The recent years have brought new knowledge on 

Cr metabolism and transport in the brain, 

allowing a better understanding on the 

pathophysiology of Cr deficiency syndromes in 

brain cells [6]. In particular, there is evidence that 

BBB presents a low permeability for Cr, and that 

CNS must ensure parts of its needs in Cr by 

endogenous synthesis. Moreover, in many 

regions of the brain, Cr endogenous synthesis 

appears to be dissociated, GAA needing to be 

transported by SLC6A8 from AGAT- to GAMT-

expressing cells for Cr synthesis to occur [15,18]. 
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