64 research outputs found

    Successful radioimmunotherapy of established syngeneic rat colon carcinoma with 211At-mAb.

    Get PDF
    Most carcinomas are prone to metastasize despite successful treatment of the primary tumor. One way to address this clinical challenge may be targeted therapy with α-emitting radionuclides such as astatine-211 (211At). Radioimmunotherapy utilizing α-particle emitting radionuclides is considered especially suitable for the treatment of small cell clusters and single cells, although lesions of different sizes may also be present in the patient. The aim of this study was primarily to evaluate the toxicity and secondarily in vivo efficacy of a 211At-labeled monoclonal antibody (mAb) directed against colon carcinoma with tumor diameters of approximately 10 mm

    Aerosols, Clusters, Greenhouse Gases, Trace Gases and Boundary-Layer Dynamics : on Feedbacks and Interactions

    Get PDF
    Turbulence is the key process transporting material and energy in the atmosphere. Furthermore, turbulence causes concentration fluctuations, influencing different atmospheric processes such as deposition, chemical reactions, formation of low-volatile vapours, formation of new aerosol particles and their growth in the atmosphere, and the effect of aerosol particles on boundary-layer meteorology. In order to analyse the connections, interactions and feedbacks relating those different processes require a deep understanding of atmospheric turbulence mechanisms, atmospheric chemistry and aerosol dynamics. All these processes will further influence air pollution and climate. The better we understand these processes and their interactions and associated feedback, the more effectively we can mitigate air pollution as well as mitigate climate forcers and adapt to climate change. We present several aspects on the importance of turbulence including how turbulence is crucial for atmospheric phenomena and feedbacks in different environments. Furthermore, we discuss how boundary-layer dynamics links to aerosols and air pollution. Here, we present also a roadmap from deep understanding to practical solutions.Peer reviewe

    Astatine-211 based radionuclide therapy: Current clinical trial landscape

    Get PDF
    Astatine-211 (211At) has physical properties that make it one of the top candidates for use as a radiation source for alpha particle-based radionuclide therapy, also referred to as targeted alpha therapy (TAT). Here, we summarize the main results of the completed clinical trials, further describe ongoing trials, and discuss future prospects

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors.

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors.

    Full text link
    peer reviewedThe Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Beta and Alpha Particle Autoradiography

    No full text
    Bokkapitel i Handbook of Nuclear Medicine and Molecular Imaging for Physicist

    Pretargeted Alpha Therapy of Disseminated Cancer Combining Click Chemistry and Astatine-211

    No full text
    To enhance targeting efficacy in the radioimmunotherapy of disseminated cancer, several pretargeting strategies have been developed. In pretargeted radioimmunotherapy, the tumor is pretargeted with a modified monoclonal antibody that has an affinity for both tumor antigens and radiolabeled carriers. In this work, we aimed to synthesize and evaluate poly-L-lysine-based effector molecules for pretargeting applications based on the tetrazine and trans-cyclooctene reaction using 211At for targeted alpha therapy and 125I as a surrogate for the imaging radionuclides 123, 124I. Poly-L-lysine in two sizes was functionalized with a prosthetic group, for the attachment of both radiohalogens, and tetrazine, to allow binding to the trans-cyclooctene-modified pretargeting agent, maintaining the structural integrity of the polymer. Radiolabeling resulted in a radiochemical yield of over 80% for astatinated poly-L-lysines and a range of 66–91% for iodinated poly-L-lysines. High specific astatine activity was achieved without affecting the stability of the radiopharmaceutical or the binding between tetrazine and transcyclooctene. Two sizes of poly-L-lysine were evaluated, which displayed similar blood clearance profiles in a pilot in vivo study. This work is a first step toward creating a pretargeting system optimized for targeted alpha therapy with 211At

    Immunohistochemical evaluation of epithelial ovarian carcinomas identifies three different expression patterns of the MX35 antigen, NaPi2b

    No full text
    Abstract Background To characterize the expression of the membrane transporter NaPi2b and antigen targeted by the MX35 antibody in ovarian tumor samples. The current interest to develop monoclonal antibody based therapy of ovarian cancer by targeting NaPi2b emphasizes the need for detailed knowledge and characterization of the expression pattern of this protein. For the majority of patients with ovarian carcinoma the risk of being diagnosed in late stages with extensive loco-regional spread disease is substantial, which stresses the need to develop improved therapeutic agents. Methods The gene and protein expression of SLC34A2/NaPi2b were analyzed in ovarian carcinoma tissues by QPCR (n = 73) and immunohistochemistry (n = 136). The expression levels and antigen localization were established and compared to the tumor characteristics and clinical data. Results Positive staining for the target protein, NaPi2b was detected for 93% of the malignant samples, and we identified three separate distribution patterns of the antigen within the tumors, based on the localization of NaPi2b. There were differences in the staining intensity as well as the distribution pattern when comparing the tumor grade and histology, the mucinous tumors presented a significantly lower expression of both the targeted protein and its related gene. Conclusion Our study identified differences regarding the level of the antigen expression between tumor grade and histology. We have identified differences in the antigen localization between borderline tumors, type 1 and type 2 tumors, and suggest that a pathological evaluation of NaPi2b in the tumors would be helpful in order to know which patients that would benefit from this targeted therapy
    corecore