517 research outputs found
Polynomial Interrupt Timed Automata
Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where
reachability and some variants of timed model checking are decidable even in
presence of parameters. They are well suited to model and analyze real-time
operating systems. Here we extend ITA with polynomial guards and updates,
leading to the class of polynomial ITA (PolITA). We prove the decidability of
the reachability and model checking of a timed version of CTL by an adaptation
of the cylindrical decomposition method for the first-order theory of reals.
Compared to previous approaches, our procedure handles parameters and clocks in
a unified way. Moreover, we show that PolITA are incomparable with stopwatch
automata. Finally additional features are introduced while preserving
decidability
Performance evaluation of an emergency call center: tropical polynomial systems applied to timed Petri nets
We analyze a timed Petri net model of an emergency call center which
processes calls with different levels of priority. The counter variables of the
Petri net represent the cumulated number of events as a function of time. We
show that these variables are determined by a piecewise linear dynamical
system. We also prove that computing the stationary regimes of the associated
fluid dynamics reduces to solving a polynomial system over a tropical
(min-plus) semifield of germs. This leads to explicit formul{\ae} expressing
the throughput of the fluid system as a piecewise linear function of the
resources, revealing the existence of different congestion phases. Numerical
experiments show that the analysis of the fluid dynamics yields a good
approximation of the real throughput.Comment: 21 pages, 4 figures. A shorter version can be found in the
proceedings of the conference FORMATS 201
Enhanced co-tolerance and co-sensitivity from long-term metal exposures of heterotrophic and autotrophic components of fluvial biofilms
Understanding the interactive effects of multiple stressors on ecosystems has started to become a major concern. The aim of our study was therefore to evaluate the consequences of a long-term exposure to environmental concentrations of Cu, Zn and As on the pollution induced community tolerance (PICT) of lotic biofilm communities in artificial indoor channels. Moreover, the specificity of the PICT was assessed by evaluating the positive and negative co-tolerance between these metals. Photosynthetic efficiency and substrate-induced respiration (SIR), targeting the autotrophic and heterotrophic communities respectively were used in short-term inhibition bioassays with Cu, Zn and As to assess sensitivities of preexposed biofilms to the metals tested. Diversity profiles of a phototrophic, eukaryotic and prokaryotic community in biofilms following the different treatments were determined and analyzed with principal component analysis. The results demonstrated that pre-exposure to metals induced structural shifts in the community and led to tolerance enhancements in the phototrophic and heterotrophic communities. On the other hand, whatever the functional parameter used (i.e. photosynthesis and SIR), communities exposed to Cu were more tolerant to Zn and vice versa. Furthermore, only phototrophic communities pre-exposed to As developed tolerance to Cu but not to Zn, whereas no co-tolerance between Cu and As was observed in the heterotrophic communities. Finally, phototrophic and heterotrophic communities exposed to Cu and Zn became more sensitive to As, reflecting a negative co tolerance between these metals. Overall, our findings support the fact that although the mode of action of the different metals is an important driver for the structure and thus the tolerance of the communities, it appears that the detoxification modes are the most important factors for the occurrence of positive or negative co-tolerance
Interrupt Timed Automata: verification and expressiveness
We introduce the class of Interrupt Timed Automata (ITA), a subclass of
hybrid automata well suited to the description of timed multi-task systems with
interruptions in a single processor environment. While the reachability problem
is undecidable for hybrid automata we show that it is decidable for ITA. More
precisely we prove that the untimed language of an ITA is regular, by building
a finite automaton as a generalized class graph. We then establish that the
reachability problem for ITA is in NEXPTIME and in PTIME when the number of
clocks is fixed. To prove the first result, we define a subclass ITA- of ITA,
and show that (1) any ITA can be reduced to a language-equivalent automaton in
ITA- and (2) the reachability problem in this subclass is in NEXPTIME (without
any class graph). In the next step, we investigate the verification of real
time properties over ITA. We prove that model checking SCL, a fragment of a
timed linear time logic, is undecidable. On the other hand, we give model
checking procedures for two fragments of timed branching time logic. We also
compare the expressive power of classical timed automata and ITA and prove that
the corresponding families of accepted languages are incomparable. The result
also holds for languages accepted by controlled real-time automata (CRTA), that
extend timed automata. We finally combine ITA with CRTA, in a model which
encompasses both classes and show that the reachability problem is still
decidable. Additionally we show that the languages of ITA are neither closed
under complementation nor under intersection
From Feynman Proof of Maxwell Equations to Noncommutative Quantum Mechanics
In 1990, Dyson published a proof due to Feynman of the Maxwell equations
assuming only the commutation relations between position and velocity. With
this minimal assumption, Feynman never supposed the existence of Hamiltonian or
Lagrangian formalism. In the present communication, we review the study of a
relativistic particle using ``Feynman brackets.'' We show that Poincar\'e's
magnetic angular momentum and Dirac magnetic monopole are the consequences of
the structure of the Lorentz Lie algebra defined by the Feynman's brackets.
Then, we extend these ideas to the dual momentum space by considering
noncommutative quantum mechanics. In this context, we show that the
noncommutativity of the coordinates is responsible for a new effect called the
spin Hall effect. We also show its relation with the Berry phase notion. As a
practical application, we found an unusual spin-orbit contribution of a
nonrelativistic particle that could be experimentally tested. Another practical
application is the Berry phase effect on the propagation of light in
inhomogeneous media.Comment: Presented at the 3rd Feynman Festival (Collage Park, Maryland,
U.S.A., August 2006
High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered Face Images
Generating photorealistic images of human faces at scale remains a
prohibitively difficult task using computer graphics approaches. This is
because these require the simulation of light to be photorealistic, which in
turn requires physically accurate modelling of geometry, materials, and light
sources, for both the head and the surrounding scene. Non-photorealistic
renders however are increasingly easy to produce. In contrast to computer
graphics approaches, generative models learned from more readily available 2D
image data have been shown to produce samples of human faces that are hard to
distinguish from real data. The process of learning usually corresponds to a
loss of control over the shape and appearance of the generated images. For
instance, even simple disentangling tasks such as modifying the hair
independently of the face, which is trivial to accomplish in a computer
graphics approach, remains an open research question. In this work, we propose
an algorithm that matches a non-photorealistic, synthetically generated image
to a latent vector of a pretrained StyleGAN2 model which, in turn, maps the
vector to a photorealistic image of a person of the same pose, expression,
hair, and lighting. In contrast to most previous work, we require no synthetic
training data. To the best of our knowledge, this is the first algorithm of its
kind to work at a resolution of 1K and represents a significant leap forward in
visual realism
Last passage percolation and traveling fronts
We consider a system of N particles with a stochastic dynamics introduced by
Brunet and Derrida. The particles can be interpreted as last passage times in
directed percolation on {1,...,N} of mean-field type. The particles remain
grouped and move like a traveling wave, subject to discretization and driven by
a random noise. As N increases, we obtain estimates for the speed of the front
and its profile, for different laws of the driving noise. The Gumbel
distribution plays a central role for the particle jumps, and we show that the
scaling limit is a L\'evy process in this case. The case of bounded jumps
yields a completely different behavior
Special K\"ahler-Ricci potentials on compact K\"ahler manifolds
A special K\"ahler-Ricci potential on a K\"ahler manifold is any nonconstant
function such that is a Killing vector field
and, at every point with , all nonzero tangent vectors orthogonal
to and are eigenvectors of both and
the Ricci tensor. For instance, this is always the case if is a
nonconstant function on a K\"ahler manifold of complex
dimension and the metric , defined wherever , is Einstein. (When such exists, may be called {\it
almost-everywhere conformally Einstein}.) We provide a complete classification
of compact K\"ahler manifolds with special K\"ahler-Ricci potentials and use it
to prove a structure theorem for compact K\"ahler manifolds of any complex
dimension which are almost-everywhere conformally Einstein.Comment: 45 pages, AMSTeX, submitted to Journal f\"ur die reine und angewandte
Mathemati
Testing real-time systems using TINA
The paper presents a technique for model-based black-box conformance testing of real-time systems using the Time Petri Net Analyzer TINA. Such test suites are derived from a prioritized time Petri net composed of two concurrent sub-nets specifying respectively the expected behaviour of the system under test and its environment.We describe how the toolbox TINA has been extended to support automatic generation of time-optimal test suites. The result is optimal in the sense that the set of test cases in the test suite have the shortest possible accumulated time to be executed. Input/output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Test cases selection is based either on using manually formulated test purposes or automatically from various coverage criteria specifying structural criteria of the model to be fulfilled by the test suite. We discuss how test purposes and coverage criterion are specified in the linear temporal logic SE-LTL, derive test sequences, and assign verdicts
- …