318 research outputs found

    The DAMPE silicon–tungsten tracker

    Get PDF
    The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m2. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN

    Silicon photomultiplier arrays - a novel photon detector for a high resolution tracker produced at FBK-irst, Italy

    Full text link
    A silicon photomultiplier (SiPM) array has been developed at FBK-irst having 32 channels and a dimension of 8.0 x 1.1 mm^2. Each 250 um wide channel is subdivided into 5 x 22 rectangularly arranged pixels. These sensors are developed to read out a modular high resolution scintillating fiber tracker. Key properties like breakdown voltage, gain and photon detection efficiency (PDE) are found to be homogeneous over all 32 channels of an SiPM array. This could make scintillating fiber trackers with SiPM array readout a promising alternative to available tracker technologies, if noise properties and the PDE are improved

    Measurement of the effect of Non Ionising Energy Losses on the leakage current of Silicon Drift Detector prototypes for the LOFT satellite

    Full text link
    The silicon drift detectors are at the basis of the instrumentation aboard the Large Observatory For x-ray Timing (LOFT) satellite mission, which underwent a three year assessment phase within the "Cosmic Vision 2015 - 2025" long-term science plan of the European Space Agency. Silicon detectors are especially sensitive to the displacement damage, produced by the non ionising energy losses of charged and neutral particles, leading to an increase of the device leakage current and thus worsening the spectral resolution. During the LOFT assessment phase, we irradiated two silicon drift detectors with a proton beam at the Proton Irradiation Facility in the accelerator of the Paul Scherrer Institute and we measured the increase in leakage current. In this paper we report the results of the irradiation and we discuss the impact of the radiation damage on the LOFT scientific performance.Comment: 21 pages, 7 figures, 2 tables. Accepted for publication by Journal of Instrumentation (JINST

    Gastrointestinal strongyles burden monitoring in a flock of Zerasca sheep treated with homeopathy

    Get PDF
    Introdution The widespread use of conventional drugs in farm animals has resulted in anthelmintic resistance as well as the contamination of deleterious molecules in animal products and in the environment. Researchers are thus focusing on production systems that rely less on chemicals. The aim of this study was to monitor the gastrointestinal strongyle burden, blood count, body condition scores (BCS), and FAffa MAlan CHArt (FAMACHA) in a local Italian breed of sheep reared in natural conditions. Methods The study was carried out in a farm where homeopathy was utilised. Over a one-year period, faeces were sampled six times from ten Zerasca ewes to evaluate the fecal eggs count using a modified McMaster technique. At the same time, blood samples were collected to evaluate white blood cells, red blood cells, hemoglobin, packed cell volume, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and red cell distribution width. BCS and FAMACHA were also recorded. Results Results showed low parasite levels in most of the samples with the highest value in the spring. Blood parameters were within the normal range, with significant fluctuations during the sampling period. BCS values corresponded to an adequate nutritional condition of the animals and FAMACHA scores did not suggest a worrying state of anemia. Conclusions In this farm, a thorough monitoring of the gastrointestinal parasite burden together with a BCS and FAMACHA evaluation allowed the amount of chemical treatments to be limited, normally administered twice a year without laboratory tests

    Radiation tests of the Silicon Drift Detectors for LOFT

    Full text link
    During the three years long assessment phase of the LOFT mission, candidate to the M3 launch opportunity of the ESA Cosmic Vision programme, we estimated and measured the radiation damage of the silicon drift detectors (SDDs) of the satellite instrumentation. In particular, we irradiated the detectors with protons (of 0.8 and 11 MeV energy) to study the increment of leakage current and the variation of the charge collection efficiency produced by the displacement damage, and we "bombarded" the detectors with hypervelocity dust grains to measure the effect of the debris impacts. In this paper we describe the measurements and discuss the results in the context of the LOFT mission.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91446

    Penetrating particle ANalyzer (PAN)

    Full text link
    PAN is a scientific instrument suitable for deep space and interplanetary missions. It can precisely measure and monitor the flux, composition, and direction of highly penetrating particles (>> \sim100 MeV/nucleon) in deep space, over at least one full solar cycle (~11 years). The science program of PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar physics, space weather and space travel. PAN will fill an observation gap of galactic cosmic rays in the GeV region, and provide precise information of the spectrum, composition and emission time of energetic particle originated from the Sun. The precise measurement and monitoring of the energetic particles is also a unique contribution to space weather studies. PAN will map the flux and composition of penetrating particles, which cannot be shielded effectively, precisely and continuously, providing valuable input for the assessment of the related health risk, and for the development of an adequate mitigation strategy. PAN has the potential to become a standard on-board instrument for deep space human travel. PAN is based on the proven detection principle of a magnetic spectrometer, but with novel layout and detection concept. It will adopt advanced particle detection technologies and industrial processes optimized for deep space application. The device will require limited mass (~20 kg) and power (~20 W) budget. Dipole magnet sectors built from high field permanent magnet Halbach arrays, instrumented in a modular fashion with high resolution silicon strip detectors, allow to reach an energy resolution better than 10\% for nuclei from H to Fe at 1 GeV/n

    A Scintillating Fiber Tracker With SiPM Readout

    Full text link
    We present a prototype for the first tracking detector consisting of 250 micron thin scintillating fibers and silicon photomultiplier (SiPM) arrays. The detector has a modular design, each module consists of a mechanical support structure of 10mm Rohacell foam between two 100 micron thin carbon fiber skins. Five layers of scintillating fibers are glued to both top and bottom of the support structure. SiPM arrays with a channel pitch of 250 micron are placed in front of the fibers. We show the results of the first module prototype using multiclad fibers of types Bicron BCF-20 and Kuraray SCSF-81M that were read out by novel 32-channel SiPM arrays from FBK-irst/INFN Perugia as well as 32-channel SiPM arrays produced by Hamamatsu. A spatial resolution of 88 micron +/- 6 micron at an average yield of 10 detected photons per minimal ionizig particle has been achieved.Comment: 5 pages, 7 figures, submitted as proceedings to the 11th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD08

    Restoration practices in Mediterranean habitats using native woody species

    Get PDF
    Since the beginning of the XXI century, Legambiente (a national environmental association), supported by the University of Palermo, has launched several naturalization projects within three Sicilian nature reserves: 1)Isola di Lampedusa (Agrigento Province); 2)Macalube di Aragona (Agrigento Province); 3)Lago Sfondato (Caltanissetta Province). Interventions were carried out on bare lands and degraded sites where natural vegetation cover was almost completely disappeared. The main aim was to restore native habitats following the principles of ecological restoration. Accordingly, differently from the classical approach, consisting in the use of preparatory species, usually Pines, native shrubs and trees were selected and used in the field

    Restoration practices in Mediterranean habitats using native woody species

    Get PDF
    Since the beginning of the XXI century, Legambiente (a national environmental association), supported by the University of Palermo, has launched several naturalization projects within three Sicilian nature reserves: 1)Isola di Lampedusa (Agrigento Province); 2)Macalube di Aragona (Agrigento Province); 3)Lago Sfondato (Caltanissetta Province). Interventions were carried out on bare lands and degraded sites where natural vegetation cover was almost completely disappeared. The main aim was to restore native habitats following the principles of ecological restoration. Accordingly, differently from the classical approach, consisting in the use of preparatory species, usually Pines, native shrubs and trees were selected and used in the field
    corecore