457 research outputs found

    Radio detection of the young binary HD 160934

    Get PDF
    Precise determination of dynamical masses of pre-main-sequence (PMS) stars is essential to calibrate stellar evolution models that are widely used to derive theoretical masses of young low-mass objects. Binary stars in young, nearby loose associations are particularly good candidates for this calibration since all members share a common age. Interestingly, some of these young binaries present a persistent and compact radio emission, which makes them excellent targets for astrometric VLBI studies. We aim to monitor the orbital motion of the binary system HD 160934, a member of the AB Doradus moving group. We observed HD 160934 with the Very Large Array and the European VLBI Network at 8.4 and 5 GHz, respectively. The orbital information derived from these observations was analyzed along with previously reported orbital measurements. We show that the two components of the binary, HD 160934 A and HD 160934 c, display compact radio emission at VLBI scales, providing precise information on the relative orbit. Revised orbital elements were estimated. Future VLBI monitoring of this pair should determine precise model-independent mass estimates for the A and c components, which will serve as calibration tests for PMS evolutionary models.Comment: 5 pages, 5 figures, accepted for publication in A&

    82: Severe Hemorrhagic Cystitis (HC) After Allogeneic Hematopoeitic Stem Cell Transplantation (HSCT): Incidence and Risk Factors

    Get PDF
    With the purpose to investigate the radio emission of new ultracool objects, we carried out a targeted search in the recently discovered system VHS J125601.92−-125723.9 (hereafter VHS 1256−-1257); this system is composed by an equal-mass M7.5 binary and a L7 low-mass substellar object located at only 15.8\,pc. We observed in phase-reference mode the system VHS 1256−-1257 with the Karl G. Jansky Very Large Array at XX- and LL- band and with the European VLBI Network at LL-band in several epochs during 2015 and 2016. We discovered radio emission at XX-band spatially coincident with the equal-mass M7.5 binary with a flux density of 60 μ\muJy. We determined a spectral index α=−1.1±0.3\alpha = -1.1 \pm 0.3 between 8 and 12 GHz, suggesting that non-thermal, optically-thin, synchrotron or gyrosynchrotron radiation is responsible for the observed radio emission. Interestingly, no signal is seen at LL-band where we set a 3-σ\sigma upper limit of 20 μ\muJy. This might be explained by strong variability of the binary or self-absorption at this frequency. By adopting the latter scenario and gyrosynchrotron radiation, we constrain the turnover frequency to be in the interval 5--8.5 GHz, from which we infer the presence of kG-intense magnetic fields in the M7.5 binary. Our data impose a 3-σ\sigma upper bound to the radio flux density of the L7 object of 9 μ\muJy at 10\,GHz.Comment: 6 pages, 4 figures. Accepted for publication in A&

    Homologous self-assembled superlattices: What causes their periodic polarity switching? Review, model, and experimental test

    Full text link
    Quantum semiconductor structures are commonly achieved by bandgap engineering that relies on the ability to switch from one semiconductor to another during their growth. Growth of a superlattice is typically demanding technologically. In contrast, accumulated evidence points to a tendency among a certain class of multiple-cation binary oxides to self-assemble spontaneously as superlattice structures. This class has been dubbed the homologous superlattices. For a famous example, when a mixture of indium and zinc is oxidized, the phases of In-O and ZnO separate in an orderly periodic manner, along the ZnO polar axis, with polarity inversion taking place between consecutive ZnO sections. As we review here, the same structure has been observed when the indium was replaced with other metals, and perhaps even in ZnO alone. This peculiar self-assembled structure has been attracting research over the past decade. The purpose of this study is to gain understanding of the physics underlying the formation of this unique structure. Here, we first provide an extensive review of the accumulated literature on these spontaneously-formed structures and then propose an explanation for the long-standing mystery of this intriguing self-assembly in the form of an electrostatic growth phenomenon and test the proposed model on experimental data

    The milliarcsecond-scale radio structure of AB Dor A

    Full text link
    Context: The fast rotator, pre-main sequence star AB Dor A is a strong and persistent radio emitter. The extraordinary coronal flaring activity is thought to be the origin of compact radio emission and other associated phenomena as large slingshot prominences. Aim: We aim to investigate the radio emission mechanism and the milliarcsecond radio structure around AB Dor A. Methods: We performed phase-referenced VLBI observations at 22.3 GHz, 8.4 GHz, and 1.4 GHz over more than one decade using the Australian VLBI array. Results: Our 8.4 GHz images show a double core-halo morphology, similar at all epochs, with emission extending at heights between 5 and 18 stellar radii. Furthermore, the sequence of the 8.4 GHz maps shows a clear variation of the source structure within the observing time. However, images at 1.4 GHz and 22.3 GHz are compatible with a compact source. The phase-reference position at 8.4 GHz and 1.4 GHz are coincident with those expected from the well-known milliarcsecond-precise astrometry of this star, meanwhile the 22.3 GHz position is 4σ\sigma off the prediction in the north-west direction. The origin of this offset is still unclear. Conclusions: We have considered several models to explain the morphology and evolution of the inner radio structure detected in AB Dor A which include emission from the stellar polar caps, a flaring, magnetically-driven loop structure, and the presence of helmet streamers. A possible close companion to AB Dor A has been also investigated. Our results confirm the extraordinary coronal magnetic activity of this star, able to produce compact radio structures at very large heights, so far only seen in binary interacting systems.Comment: 11 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    Dynamical masses of the low-mass stellar binary AB Doradus B

    Get PDF
    Context. ABDoradus is the main system of the ABDoradus moving group. It is a quadruple system formed by two widely separated binaries of pre-main-sequence (PMS) stars: ABDorA/C and ABDor Ba/Bb. The pair ABDorA/C has been extensively studied and its dynamical masses have been determined with high precision, thus making of ABDorC a benchmark for calibrating PMS stellar models. If the orbit and dynamical masses of the pair ABDor Ba/Bb can be determined, they could not only play a similar role to that of ABDorC in calibrating PMS models, but would also help to better understand the dynamics of the whole ABDoradus system. Aims. We aim to determine the individual masses of the pair ABDor Ba/Bb using VLBI observations and archive infrared data, as part of a larger program directed to monitor binary systems in the ABDoradus moving group. Methods. We observed the system ABDor B between 2007 and 2013 with the Australian Long Baseline Array (LBA), at a frequency of 8.4 GHz in phase-reference mode. Results. We detected, for the first time, compact radio emission from both stars in the binary, ABDor Ba and ABDor Bb. This result allowed us to determine the orbital parameters of both the relative and absolute orbits and, consequently, their individual dynamical masses: 0.28±0.05M_sun and 0.25±0.05M_sun, respectively. Conclusions. Comparisons of the dynamical masses with the prediction of PMS evolutionary models show that the models underpredict the dynamical masses of the binary components Ba and Bb by ~30 and 40%, respectively, although they all still agree at the 2-sigma level. The same stellar models favour an age between 50 and 100 Myr for this system. We also discuss the evolutionary status of ABDor Ba/Bb in terms of an earlier double-double star scenario that might explain the strong radio emission detected in both components

    The Electrical-Thermal Switching in Carbon Black-Polymer Composites as a Local Effect

    Full text link
    Following the lack of microscopic information about the intriguing well-known electrical-thermal switching mechanism in Carbon Black-Polymer composites, we applied atomic force microscopy in order to reveal the local nature of the process and correlated it with the characteristics of the widely used commercial switches. We conclude that the switching events take place in critical interparticle tunneling junctions that carry most of the current. The macroscopic switched state is then a result of a dynamic-stationary state of fast switching and slow reconnection of the corresponding junctions.Comment: 14 pages, 5 figures,Typographic correctio

    The milliarcsecond-scale radio structure of AB Doradus A

    Get PDF
    Context. The fast rotator, pre-main sequence star AB Dor A is a strong and persistent radio emitter. The extraordinary coronal flaring activity is thought to be the origin of compact radio emission and other associated phenomena, such as large slingshot prominences. Aims. We aim to investigate the radio emission mechanism and the milliarcsecond radio structure around AB Dor A. Methods. We performed phase-referenced VLBI observations at 22.3 GHz, 8.4 GHz, and 1.4 GHz over more than one decade using the Australian VLBI array. Results. Our 8.4 GHz images show a double core-halo morphology, similar at all epochs, with emission extending at heights between 5 and 18 stellar radii. Furthermore, the sequence of the 8.4 GHz maps shows a clear variation of the source structure within the observing time. However, images at 1.4 GHz and 22.3 GHz are compatible with a compact source. The phase-reference position at 8.4 GHz and 1.4 GHz are coincident with those expected from the well-known milliarcsecond-precise astrometry of this star, meanwhile the 22.3 GHz position is 4σ off the prediction in the north-west direction. The origin of this offset is still unclear. Conclusions. We have considered several models to explain the morphology and evolution of the inner radio structure detected in AB Dor A. These models include emission from the stellar polar caps, a flaring, magnetically-driven loop structure, and the presence of helmet streamers. We also investigated a possible close companion to AB Dor A. Our results confirm the extraordinary coronal magnetic activity of this star, capable of producing compact radio structures at very large heights that have so far only been seen in binary interacting systems.J.B.C., R.A., J.C.G., and J.M.M. were partially supported by the Spanish MINECO projects AYA2012-38491-C02-01, AYA2015-63939- C2-2-P, PGC2018-098915-B-C22 and by the Generalitat Valenciana projects PROMETEO/2009/104 and PROMETEOII/2014/05
    • …
    corecore