31 research outputs found

    Distance perception in a natural outdoor setting: is there a developmental trend to overconstancy?

    Get PDF
    The main purpose of the present study was to investigate whether in natural environment, using very large physical distances, there is a trend to overconstancy for distance estimates during development. One hundred and twenty-nine children aged 5 to 13 years old and twenty-one adults (in a control group), participated as observers. The observer’s task was to bisect egocentric distances, ranging from 1.0 to 296.0 m, presented in a large open field. The analyses focused on two parameters, constant errors and variable errors, such as measuring accuracy and precision, respectively. A third analysis focused on the developmental pattern of shifts in constancy as a function of age and range of distances. Constant error analysis showed that there are two relevant parameters for accuracy, age, and range of distances. For short distances, there are three developmental stages: 5-7 years, when children have unstable responses, 7-11, underconstancy, and 13 to adulthood, when accuracy is reached. For large distances, there is a two-stage development: 5-11 years, with severe underconstancy, and beyond this age, with mild underconstancy. Variable errors analyses indicate that precision is noted for 7 year-old children, independently of the range of distances. The constancy analyses indicated that there is a shift from constancy (or slightly overconstancy) to underconstancy as a function of physical distance for all age groups. The age difference is noted in the magnitude of underconstancy that occurs in larger distances, where adults presented lower levels of underconstancy than children. The present data were interpreted as due to a developmental change in cognitive processing rather than to changes in visual space perception.El principal objetivo de este estudio fue investigar si en un medio natural, empleando distancias físicas muy grandes, hay una tendencia a sobre-constancia para las estimaciones de distancias durante el desarrollo evolutivo. Participaron como observadores 129 niños de edades entre 5 y 13 años y 21 adultos (en un grupo control). La tarea de los observadores consistió en biseccionar unas distancias egocéntricas, que variaban entre 1,0 y 296,0 m, presentadas en un gran campo abierto. El análisis se centró en dos parámetros, error constante y error variable, de la exactitud y precisión de medida, respectivamente. Un tercer análisis se centró en el patrón evolutivo de cambios en la constancia en función de la edad y el rango de distancias. El análisis de los errores constantes mostró que hay dos parámetros relevantes para la precisión, edad y rango de distancias. Para distancias cortas, hay tres fases evolutivas: 5-7 años, cuando los niños dan respuestas inestables, 7-11, infra-constancia, y 13 años hasta la adultez, cuando alcanzan la exactitud (constancia). Para las distancias largas, hay un desarrollo de dos fases: 5-11 años, con infra-constancia severa, y más allá de esta edad, con ligera infraconstancia. El análisis del error variable indica que se alcanza precisión a partir de 7 años, con independencia del rango de distancias. En análisis de la constancia indica que existe un cambio desde la constancia (o una ligera sobre-constancia) a infra-constancia en función de la distancia física para todos los grupos de edad. La diferencia de edad se nota en la magnitud de la infra-constancia que ocurre en las distancias más largas, donde los adultos presentaban niveles menores de infra-constancia que los niños. Estos datos se interpretan como debidos a un cambio evolutivo en el procesamiento cognitivo más que a cambios en la percepción visual del espacio

    Attention to Monocular Images Bias Binocular Rivalry

    Get PDF
    When monocular images cannot be fused, perception alternates between the two (or more) possible images. This phenomenon, binocular rivalry (BR), is driven by the physical properties of the stimuli (size, contrast, spatial frequency, etc.) but it can also be modulated by attention to features of one of the rival stimuli (Chong et al., 2005; Dieter et al., 2016) and by attentional demands independent of the BR assessment (Paffen et al., 2008). Instead of the perceptually demanding tasks previously used to bias BR, we designed a simple counting task. We monocularly presented a number of trials (around 10 min) with a set of symbols and asked participants to count them. We found that after this task, dominance durations decreased for the unattended channel, and did not change for the attended channel. The results parallel those of Paffen et al. (2008) and square nicely with Levelt’s second proposition, suggesting that the counting task effectively increased the sensibility of one channel which led to increased strength of the images presented to that channel. Alternatively, the results could be explained assuming that the non-attended channel was inhibited during the counting task, and the inhibition was carried over to the BR task

    The effects of drift and displacement motion on Dynamic Visual Acuity

    No full text
    Dynamic Visual Acuity (DVA) can be measured from two types of
 equivalently considered movement referred to as drifting-motion and
 displacement-motion. Displacement motion can be best described as the
 horizontal displacement of a stimulus, thus implying pursuit eye
 movements, and involves moving the stimulus from the fixation point of
 gaze towards the periphery. The drifting motion of a Gabor patch, for
 example, avoids pursuit eye movements, since the gaze is fixed in a point of
 the patch. Our data shows that in both types of movement visual acuity
 (VA), expressed in terms of spatial frequency, diminished as the velocity of
 the target increased. However, the slope of the regression equation indicated
 that this impairment is more than two-fold in the case of drifting-motion
 when compared to displacement motion. As the greater impairment took
 place when pursuit eye movements did not exist, our data suggests that these
 two types of motions correct differently for retinal slip. Retinal slip appears
 to be less efficiently compensated for in the case of drifting motion having
 adverse consequences on VA, while retinal slip has a higher tolerance in the
 case of displacement motion exhibited by the performance in VA

    Visual fatigue while watching 3D stimuli from different positions

    Get PDF
    Purpose: When observers focus their stereoscopic visual system for a long time (e.g., watching a 3D movie) they may experience visual discomfort or asthenopia. We tested two types of models for predicting visual fatigue in a task in which subjects were instructed to discriminate between 3D characters. One model was based on viewing distance (focal distance, vergence distance) and another in visual direction (oculomotor imbalance). Method: A 3D test was designed to assess binocular visual fatigue while looking at 3D stimuli located in different visual directions and viewed from two distances from the screen. The observers were tested under three conditions: (a) normal vision; (b) wearing a lens (−2 diop.); (c) wearing a base-out prism (2▿) over each eye. Sensitivity and specificity were calculated (as Signal Detection Theory parameters: SDT). Results: An ANOVA and SDT analyses revealed that impaired visual performance were directly related to short distance and larger deviation in visual direction, particularly when the stimuli were located nearer and at more than 24° to the centre of the screen in dextroversion and beyond. Conclusion: This results support a mixed model, combining a model based on the visual angle (related to viewing distance) and another based on the oculomotor imbalance (related to visual direction). This mixed model could help to predict the distribution of seats in the cinema room ranging from those that produce greater visual comfort to those that produce more visual discomfort. Also could be a first step to pre-diagnosis of binocular vision disorders

    Attentional blink in children with attention deficit hyperactivity disorder

    No full text
    Objective:To explore the temporal mechanism of attention in children with attention deficit hyperactivity disorder (ADHD) and controls using a rapid serial visual presentation (RSVP) task in which two letters (T1 and T2) were presented in close temporal proximity among distractors (attentional blink [AB]).Method:Thirty children aged between 9 and 13 years (12 with ADHD combined type and 18 controls) took part in the study. Both groups performed two kinds of RSVP task. In the single task, participants simply had to identify a target letter (T1), whereas in the dual task, they had to identify a target letter (T1) and a probe letter (T2).Results:The ADHD and control groups were equivalent in their single-task performance. However, in the dual-task condition, there were significant between-group differences in the rate of detection of the probe letter (T2) at lag + 1 and lag + 4. The ADHD group exhibited a larger overall AB compared with controls.Conclusion:Our findings provide support for a link between ADHD and attentional blink

    Schematic explanation of the angle of eye vergence.

    No full text
    <p>The eyes focus on a single point in space. The angle of eye vergence relates to the distance of the focus point to the eyes. For a near point the vergence angle (α1) is larger than for a far point (α2). α represents the angle of eye vergence.</p
    corecore