91 research outputs found

    Semileptonic Bs ->DsJ(2460)l nu decay in QCD

    Get PDF
    Using three point QCD sum rules method, the form factors relevant to the semileptonic Bs ->DsJ (2460)l nu decay are calculated. The q2 dependence of these form factors is evaluated and compared with the heavy quark effective theory predictions. The dependence of the asymmetry parameter alpha, characterizing the polarization of DsJ meson, on q2 is studied .The branching ratio of this decay is also estimated and is shown that it can be easily detected at LHC.Comment: 21 pages, 5 figures and 1 Tabl

    Wormhole Geometries In f(R,T)f(R,T) Gravity

    Full text link
    We study wormhole solutions in the framework of f (R,T) gravity where R is the scalar curvature, and T is the trace of the stress-energy tensor of the matter. We have obtained the shape function of the wormhole by specifying an equation of state for the matter field and imposing the flaring out condition at the throat. We show that in this modified gravity scenario, the matter threading the wormhole may satisfy the energy conditions, so it is the effective stress-energy that is responsible for violation of the null energy condition.Comment: 9 pages, 4 figures, published version, references adde

    HSP70/IL-2 treated NK cells effectively cross the blood brain barrier and target tumor cells in a rat model of induced glioblastoma multiforme (GBM)

    Get PDF
    Natural killer (NK) cell therapy is one of the most promising treatments for Glioblastoma Multiforme (GBM). However, this emerging technology is limited by the availability of sufficient numbers of fully functional cells. Here, we investigated the efficacy of NK cells that were expanded and treated by interleukin-2 (IL-2) and heat shock protein 70 (HSP70), both in vitro and in vivo. Proliferation and cytotoxicity assays were used to assess the functionality of NK cells in vitro, after which treated and naïve NK cells were administrated intracranially and systemically to compare the potential antitumor activities in our in vivo rat GBM models. In vitro assays provided strong evidence of NK cell efficacy against C6 tumor cells. In vivo tracking of NK cells showed efficient homing around and within the tumor site. Furthermore, significant amelioration of the tumor in rats treated with HSP70/Il-2-treated NK cells as compared to those subjected to nontreated NK cells, as confirmed by MRI, proved the efficacy of adoptive NK cell therapy. Moreover, results obtained with systemic injection confirmed migration of activated NK cells over the blood brain barrier and subsequent targeting of GBM tumor cells. Our data suggest that administration of HSP70/Il-2-treated NK cells may be a promising therapeutic approach to be considered in the treatment of GBM. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Response of precast foamed concrete sandwich panels to flexural loading

    Get PDF
    This paper presents the results of an experimental and analytical investigation of a total of six precast foamed concrete sandwich panels (PFCSPs) as one-way acting slabs tested under flexural loads. Foamed concrete of 25.73 MPa was used to produce the PFCSP concrete wythes. The results obtained from the tests have been discussed in terms of ultimate flexural strength capacity, moment-vertical deflection profile, load–strain relationship, strain variation across the slab depth, influence of aspect ratio, cracking patterns, and ultimate flexural load at failure. An analytical study of finite element analysis (FEA) as a one-way slab model was then conducted. The increase in aspect ratio (L/d) from 18.33 to 26.67 shows a reduction of 50% and 69.6% on the ultimate flexural strength capacity as obtained experimentally and in FEA models, respectively. Theoretical analyses on the extremes of fully composite and non-composite actions were also determined. The experimental results showed that cracking patterns were observed in one direction only, similar to those reported on a reinforced concrete solid slab, as well as precast concrete sandwich panels, when both concrete wythes act in a single composite manner. The experimental results were compared with FEA model data, and a significant degree of accuracy was obtained. Therefore, the PFCSP slab can serve as an alternative to the normal concrete slab system in buildings

    Glioblastoma cancer stem cell biology: Potential theranostic targets

    Get PDF
    Glioblastoma multiforme (GBM) is among the most incurable cancers. GBMs survival rate has not markedly improved, despite new radical surgery protocols, the introduction of new anticancer drugs, new treatment protocols, and advances in radiation techniques. The low efficacy of therapy, and short interval between remission and recurrence, could be attributed to the resistance of a small fraction of tumorigenic cells to treatment. The existence and importance of cancer stem cells (CSCs) is perceived by some as controversial. Experimental evidences suggest that the presence of therapy-resistant glioblastoma stem cells (GSCs) could explain tumor recurrence and metastasis. Some scientists, including most of the authors of this review, believe that GSCs are the driving force behind GBM relapses, whereas others however, question the existence of GSCs. Evidence has accumulated indicating that non-tumorigenic cancer cells with high heterogeneity, could undergo reprogramming and become GSCs. Hence, targeting GSCs as the �root cells� initiating malignancy has been proposed to eradicate this devastating disease. Most standard treatments fail to completely eradicate GSCs, which can then cause the recurrence of the disease. To effectively target GSCs, a comprehensive understanding of the biology of GSCs as well as the mechanisms by which these cells survive during treatment and develop into new tumor, is urgently needed. Herein, we provide an overview of the molecular features of GSCs, and elaborate how to facilitate their detection and efficient targeting for therapeutic interventions. We also discuss GBM classifications based on the molecular stem cell subtypes with a focus on potential therapeutic approaches. © 201

    Glioblastoma cancer stem cell biology: Potential theranostic targets

    Get PDF
    Glioblastoma multiforme (GBM) is among the most incurable cancers. GBMs survival rate has not markedly improved, despite new radical surgery protocols, the introduction of new anticancer drugs, new treatment protocols, and advances in radiation techniques. The low efficacy of therapy, and short interval between remission and recurrence, could be attributed to the resistance of a small fraction of tumorigenic cells to treatment. The existence and importance of cancer stem cells (CSCs) is perceived by some as controversial. Experimental evidences suggest that the presence of therapy-resistant glioblastoma stem cells (GSCs) could explain tumor recurrence and metastasis. Some scientists, including most of the authors of this review, believe that GSCs are the driving force behind GBM relapses, whereas others however, question the existence of GSCs. Evidence has accumulated indicating that non-tumorigenic cancer cells with high heterogeneity, could undergo reprogramming and become GSCs. Hence, targeting GSCs as the �root cells� initiating malignancy has been proposed to eradicate this devastating disease. Most standard treatments fail to completely eradicate GSCs, which can then cause the recurrence of the disease. To effectively target GSCs, a comprehensive understanding of the biology of GSCs as well as the mechanisms by which these cells survive during treatment and develop into new tumor, is urgently needed. Herein, we provide an overview of the molecular features of GSCs, and elaborate how to facilitate their detection and efficient targeting for therapeutic interventions. We also discuss GBM classifications based on the molecular stem cell subtypes with a focus on potential therapeutic approaches. © 201

    Stability evaluation of a grid-tied hybrid wind/PV farm joined with a hybrid energy-storage system

    Get PDF
    This paper presents the stability-evaluation outcomes of a multimachine power system (MMPS) connected with a large-scale hybrid wind farm (WF) and photovoltaic (PV) farm or hybrid wind/PV farm (HWPF) and a hybrid energy-storage system (HESS) consisting of a vanadium redox flow battery (VRFB) and a supercapacitor (SC). A probability scheme is used to determine the rated power of the proposed HESS, where the capacities of the VRFB-ESS and the SC-ESS are designed to effectively utilize their operating features. The control strategy of the HESS is proposed to reduce the pressure of the VRFB-ESS and smooth the output power fluctuations of the HWPF. The steady-state stability, small-signal stability, dynamic performances, and transient simulations of the studied grid-tied HWPF fed to the MMPS with and without the HESS are achieved. The simulation outcomes show that the proposed HESS can enhance the stability and power-smoothing performance of the HWPF fed to the MMPS

    Structural behavior of mortarless interlocking load bearing hollow block wall panel under out-of-plane loading.

    Get PDF
    Experimental and numerical investigation of interlocking mortarless wall panels with 1.0 m height, 1.2 m width and 150 mm thickness are conducted. Behaviour of both hollow and partially grouted masonry wall panels is studied. The panels were tested under constant pre-compressive vertical load and out-of-plane lateral load. Lateral load carrying capacity, deflection at mid height, dry joint opening between block layers and mode of failure are investigated. Strain characteristics throughout the loading process are also monitored. A finite element analysis is presented for the system and a good agreement between the experimental and modelling results is achieved. Parametric study using the finite element model is also presented and the effect of different parameters; amount of pre-compressive load and slenderness ratio is studied. The study reveals that pre-compressive vertical load and reinforcement significantly affect the structural behaviour of mortarless walls under out-of-plane loading. Useful expressions for the capacity are obtained from the analysis

    Repertoire sequencing of B cells elucidates the role of UNG and mismatch repair proteins in somatic hypermutation in humans

    Get PDF
    The generation of high-affinity antibodies depends on somatic hypermutation (SHM). SHM is initiated by the activation-induced cytidine deaminase (AID), which generates uracil (U) lesions in the B-cell receptor (BCR) encoding genes. Error-prone processing of U lesions creates a typical spectrum of point mutations during SHM. The aim of this study was to determine the molecular mechanism of SHM in humans; currently available knowledge is limited by the number of mutations analyzed per patient. We collected a unique cohort of 10 well-defined patients with bi-allelic mutations in genes involved in base excision repair (BER) (UNG) or mismatch repair (MMR) (MSH2, MSH6, or PMS2) and are the first to present next-generation sequencing (NGS) data of the BCR, allowing us to study SHM extensively in humans. Analysis using ARGalaxy revealed selective skewing of SHM mutation patterns specific for each genetic defect, which are in line with the five-pathway model of SHM that was recently proposed based on mice data. However, trans-species comparison revealed differences in the role of PMS2 and MSH2 in strand targeting between mice and man. In conclusion, our results indicate a role for UNG, MSH2, MSH6, and PMS2 in the generation of SHM in humans comparable to their function in mice. However, we observed differences in strand targeting between humans and mice, emphasizing the importance of studying molecular mechanisms in a human setting. The here developed method combining NGS and ARGalaxy analysis of BCR mutation data forms the basis for efficient SHM analyses of other immune deficiencies
    corecore