6 research outputs found

    An Experimental and Numerical Comparison of Flow Hydraulic Parameters in Circular Crested Weir Using Flow3D

    Get PDF
    Circular crested weirs consist of a circular crested of upstream and downstream walls. These weirs are widely used in hydraulic engineering as water discharge structures and can be used to control water level in channels and tanks. In the present study, using Flow3D software, hydraulic properties were investigated to find weir geometry optimization through CFD method. Also, this study attempted to investigate flow on some sections of circular crested weirs in 3 groups and 11 models. Upstream and downstream slope changes as well as the height of the weir were also studied. To validate the model, laboratory models were used. In the research, flow depth parameters on crest, pressure distribution, velocity distribution, energy loss on circular crested weirs, as well as the height and changes of upstream and downstream slope were evaluated. Flow depth on the body of circular crest in this state is about 0.71 (H1). Upstream slope changes on flow depth on the weir’s crest revealed that increasing upstream slope causes to the increase of flow relative depth (H1/R) on the crest about 62%. Downstream changes in H1/R values less than 0.7 have no significant effect on discharge coefficient; however, increasing H1/R values seems to cause more change in slope

    Experimental and numerical modelling of water waves in sewer networks during sewer/surface flow interaction using a coupled ODE-SWE solver

    Get PDF
    Flooding in urban areas is expected to increase its magnitude and frequency in the future. Therefore, there is a strong need to better model sewer–surface flow interactions. Existing numerical methods are commonly based on simplified representations of sewer/surface mass exchange, and mainly validated in steady flow conditions. Current methodologies describing the propagation of transient conditions/waves through interaction nodes are simplified, rely on empirical coefficients and/or lack detailed validation. In this paper, an integrated numerical approach for modelling the propagation of water waves through interaction nodes (e.g., manholes) is presented. In this solution, the shallow water equations are used to simulate the free-surface propagation inside the sewer network, and an ordinary differential equation is employed for modelling flow regimes through pipes and manholes. The model proposed is validated against the well-known STAR-CD modelling software for a number of test cases. Finally, further validation is performed against experimental data describing the evolution of water depth around a manhole in unsteady surcharging conditions

    An Experimental and Numerical Comparison of Flow Hydraulic Parameters in Circular Crested Weir Using Flow3D

    No full text
    Abstract Circular crested weirs consist of a circular crested of upstream and downstream walls. These weirs are widely used in hydraulic engineering as water discharge structures and can be used to control water level in channels and tanks. In the present study, using Flow3D software, hydraulic properties were investigated to find weir geometry optimization through CFD method. Also, this study attempted to investigate flow on some sections of circular crested weirs in 3 groups and 11 models. Upstream and downstream slope changes as well as the height of the weir were also studied. To validate the model, laboratory models were used. In the research, flow depth parameters on crest, pressure distribution, velocity distribution, energy loss on circular crested weirs, as well as the height and changes of upstream and downstream slope were evaluated. Flow depth on the body of circular crest in this state is about 0.71 (H 1 ). Upstream slope changes on flow depth on the weir's crest revealed that increasing upstream slope causes to the increase of flow relative depth (H 1 /R) on the crest about 62%. Downstream changes in H 1 /R values less than 0.7 have no significant effect on discharge coefficient; however, increasing H 1 /R values seems to cause more change in slope
    corecore