625 research outputs found

    Numerical simulation of the non-Newtonian mixing layer

    Get PDF
    This work is a continuing effort to advance our understanding of the effects of polymer additives on the structures of the mixing layer. In anticipation of full nonlinear simulations of the non-Newtonian mixing layer, we examined in a first stage the linear stability of the non-Newtonian mixing layer. The results of this study show that, for a fluid described by the Oldroyd-B model, viscoelasticity reduces the instability of the inviscid mixing layer in a special limit where the ratio (We/Re) is of order 1 where We is the Weissenberg number, a measure of the elasticity of the flow, and Re is the Reynolds number. In the present study, we pursue this project with numerical simulations of the non-Newtonian mixing layer. Our primary objective is to determine the effects of viscoelasticity on the roll-up structure. We also examine the origin of the numerical instabilities usually encountered in the simulations of non-Newtonian fluids

    Numerical simulation of non-Newtonian free shear flows

    Get PDF
    Free shear flows, like those of mixing layers, are encountered in aerodynamics, in the atmosphere, and in the ocean as well as in many industrial applications such as flow reactors or combustion chambers. It is, therefore, crucial to understand the mechanisms governing the process of transition to turbulence in order to predict and control the evolution of the flow. Delaying transition to turbulence as far downstream as possible allows a gain in energy expenditure while accelerating the transition can be of interest in processes where high mixing is desired. Various methods, including the use of polymer additives, can be effective in controlling fluid flows. The drag reduction obtained by the addition of small amounts of high polymers has been an active area of research for the last three decades. It is now widely believed that polymer additives can affect the stability of a large variety of flows and that dilute solutions of these polymers have been shown to produce drag reductions of over 80 percent in internal flows and over 60 percent in external flows under a wide range of conditions. The major thrust of this work is to study the effects of polymer additives on the stability of the incompressible mixing layer through large scale numerical simulations. In particular, we focus on the two dimensional flow and examine how the presence of viscoelasticity may affect the typical structures of the flow, namely roll-up and pairing of vortices

    Clustering in stable and unstable nuclei in pp-shell and sdsd-shell regions

    Full text link
    According to microscopic calculations with antisymmetrized molecular dynamics, we studied cluster features in stable and unstable nuclei. A variety of structure was found in stable and unstable nuclei in the pp-shell and sdsd-shell regions. The structure of excited states of 12^{12}Be was investigated, while in sdsd-shell nuclei we focused on molecular states and deformed states. The deformed states in 28^{28}Si and 40^{40}Ca were discussed in connection with the high-lying molecular states. Appealing molecular states in 36^{36}Ar and 24^{24}Mg were suggested. The results signified that both clustering of nucleons and mean-field formation are essential features in sdsd-shell nuclei as well as pp-shell nuclei.Comment: 5 pages, 2 figs, proceedings of the 8th International conference on Clustering Aspects of Nuclear Structure and Dynamics, Nov. 2003, Nara, Japan, to be published in Nucl.Phys.

    The Qur'an Seminar Commentary

    Get PDF
    The Qur'an Seminar Commentary is an unprecedented work of collaboration in the field of Qur'anic Studies, involving the insights of 25 scholars on 50 Qur'anic passages. These scholars represent a diverse range of disciplinary backgrounds and provide readers with unique insights into the latest trends of research in the Qur'an. This Commentary is a useful and illuminating reference work for students and scholars in the field of Qur'anic Studies

    Analysis in Dried Fruit by LC/MS/MS and a Modified QuEChERS Procedure

    Get PDF
    A sensitive and reliable multi-mycotoxin method was developed for the simultaneous determination of 16 toxicological important mycotoxins, such as aflatoxins B1, B2, G1, and G2; enniatins A, A1, B, and B1; beauvericin; ochratoxin A; fumonisin B1, B2, andB3; diacetoxyscirprenol; HT-2; and T-2 toxin in dried fruits using liquid chromatography combined with electrospray ionization-triple quadrupole tandem-mass spectrometry. Mycotoxins have been extracted from the samples using a modified quick, easy, cheap, effective, rugged, and safe procedure. The method was based on a single extraction with acidified acetonitrile, followed by partitioning with salts, avoiding any further clean-up step. Limits of detections ranged from 0.08 to 15 μg kg−1 and limits of quantification ranged from 0.2 to 45 μg kg−1, which were below the legal limit set by the European Union for the legislated mycotoxines. The recoveries in spiked samples ranged from 60 to 135 % except for beauvericin using matrix-matched calibration curves for quantification, with good inter- and intraday repeatability (respective relative standard deviation ≤20 and 9 %). The developed method was applied to 15 commercial dried fruits: raisins, figs, apricots, plums, and dates purchased in local markets from Spain. Among the mycotoxins studied, enniantins and aflatoxins were the most predominant mycotoxins

    High-spin structures of 88Kr and 89Rb: Evolution from collective to single-particle behaviors

    Full text link
    The high-spin states of the two neutron-rich nuclei, 88Kr and 89R have been studied from the 18O + 208Pb fusion-fission reaction. Their level schemes were built from triple gamma-ray coincidence data and gamma-gamma angular correlations were analyzed in order to assign spin and parity values to most of the observed states. The two levels schemes evolve from collective structures to single-particle excitations as a function of the excitation energy. Comparison with results of shell-model calculations gives the specific proton and neutron configurations which are involved to generate the angular momentum along the yrast lines.Comment: 12 pages, 9 figures, Physical Review C (2013) in pres

    Insomnia in shift work

    Get PDF
    Background: Shift work disorder involves insomnia and/or excessive sleepiness associated with the work schedule. The present study examined the impact of insomnia on the perceived physical and psychological health of adults working on night and rotating shift schedules compared to day workers. Methods: A total of 418 adults (51% women, mean age 41.4 years), including 51 night workers, 158 rotating shift workers, and 209 day workers were selected from an epidemiological study. An algorithm was used to classify each participant of the two groups (working night or rotating shifts) according to the presence or absence of insomnia symptoms. Each of these individuals was paired with a day worker according to gender, age, and income. Participants completed several questionnaires measuring sleep, health, and psychological variables. Results: Night and rotating shift workers with insomnia presented a sleep profile similar to that of day workers with insomnia. Sleep time was more strongly related to insomnia than to shift work per se. Participants with insomnia in the three groups complained of anxiety, depression, and fatigue, and reported consuming equal amounts of sleep-aid medication. Insomnia also contributed to chronic pain and otorhinolaryngology problems, especially among rotating shift workers.Work productivity and absenteeism were more strongly related to insomnia. Conclusion: The present study highlights insomnia as an important component of the sleep difficulties experienced by shift workers. Insomnia may exacerbate certain physical and mental health problems of shift workers, and impair their quality of life

    The Qur'an Seminar Commentary

    Get PDF
    The Qur'an Seminar Commentary is an unprecedented work of collaboration in the field of Qur'anic Studies, involving the insights of 25 scholars on 50 Qur'anic passages. These scholars represent a diverse range of disciplinary backgrounds and provide readers with unique insights into the latest trends of research in the Qur'an. This Commentary is a useful and illuminating reference work for students and scholars in the field of Qur'anic Studies

    High-spin structures of 136Cs

    Get PDF
    Odd-odd 136Cs nuclei have been produced in the 18O + 208Pb and 12C + 238U fusion-fission reactions and their gamma rays studied with the Euroball array. The high-spin level scheme has been built up to ~ 4.7 MeV excitation energy and spin I ~ 16 hbar from the triple gamma-ray coincidence data. The configurations of the three structures observed above ~ 2 MeV excitation energy are first discussed by analogy with the proton excitations identified in the semi-magic 137Cs nucleus, which involve the three high-j orbits lying above the Z=50 gap, pi g_{7/2}, pi d_{5/2} and pi h_{11/2}. This is confirmed by the results of shell-model calculations performed in this work.Comment: 6 pages, 4 figures, 3 table

    High-spin states with seniority v=4,4,6 in 119-126Sn

    Full text link
    The 119-126Sn nuclei have been produced as fission fragments in two reactions induced by heavy ions: 12C+238U at 90 MeV bombarding energy, 18O+208Pb at 85 MeV. Their level schemes have been built from gamma rays detected using the Euroball array. High-spin states located above the long-lived isomeric states of the even- and odd-A 120-126Sn nuclei have been identified. Moreover isomeric states lying around 4.5 MeV have been established in 120,122,124,126Sn from the delayed coincidences between the fission fragment detector SAPhIR and the Euroball array. The states located above 3-MeV excitation energy are ascribed to several broken pairs of neutrons occupying the nu h11/2 orbit. The maximum value of angular momentum available in such a high-j shell, i.e. for mid-occupation and the breaking of the three neutron pairs, has been identified. This process is observed for the first time in spherical nuclei.Comment: 20 pages, 22 figures, 12 tables, accepted for publication in Physical Review
    corecore