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Numerical simulation of non-
Newtonian free shear flows

By G. M. Homsy 1 AND J. Azalez 1

1. Motivation and objectives

Free shear flows, like those of mixing layers, are encountered in aerodynamics, in

the atmosphere, and in the ocean as well as in many industrial applications such

as flow reactors or combustion chambers. It is, therefore, crucial to understand the

mechanisms governing the process of transition to turbulence in order to predict

and control the evolution of the flow. Delaying transition to turbulence as far

downstream as possible allows a gain in energy expenditure while accelerating the

transition can be of interest in processes where high mixing is desired. Various

methods, including the use of polymer additives, can be effective in controlling fluid
flOWS.

The drag reduction obtained by the addition of small amounts of high polymers
has been an active area of research for the last three decades. It is now widely

believed that polymer additives can affect the stability of a large variety of flows and

that dilute solutions of these polymers have been shown to produce drag reductions

of over 80% in internal flows and over 60% in external flows under a wide range of

conditions. (Berman 1978, Sellin 1985 and Sellin & Moses 1989)
The major thrust of this work is to study the effects of polymer additives on

the stability of the incompressible mixing layer through large scale numerical sim-
ulations. In particular, we focus on the two-dimensional flow and examine how

the presence of viscoelasticity may affect the typical structures of the flow, namely

roll-up and pairing of vortices.

2. Accomplishments

_.1 Problem definition

The flow is examined in a reference frame moving with the average velocity. In

such frame, the flow is characterized by the upper free-stream velocity Uo and the

momentum thickness of the mixing layer 6. We used a vorticity-streamfunction
formulation for Cauchy's momentum equation,

Dg

p-_- = -Vp + V.r (1)

This equation is closed through evolution equations relating the stress tensor to the

shear rate tensor. In all the subsequent analysis, the stress tensor is written as the

sum of two terms (Larson (1988) and Bird et al. (1987)):

r = 1"' + r p = rb, _ + r/pa = r/[n;}, + (1 - n)a] (2)
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The firstterm correspondsto the contributionof the Newtonian solventand is

proportionalto the shear ratetensorwith _/$the solventviscosity.The second

term representsthe polymericcontributionto the stress,and isproportionalto the

tensora with 7/pthe polymericcontributionto the shearviscosity.The parameter

T}, q" may vary between 0 and I. When _ 1,the fieldequations
TI, + qp 17

and the constitutive equations can be decoupled, and the problem reduces to that

of purely Newtonian flow.

The tensor a satisfies the appropriate rheological equation that can be of differ-

ential or integral form (Bird 1967). In the present study, we used two rheological

models, the Oldroyd-B model and the FENE-P model.

_._ Rheological model8

In the Oldroyd-B model, the polymer stress a satisfies the upper convected

Maxwell equation:

+ a= (3)

where:

6a=0a+_, Va V,7± a-a V_" (4)
6t &

isthe upper-convectedderivativeof a, and A isthe relaxationtime of the poly-

mer. This model givesa reasonablygood qualitativedescriptionof dilutepolymer

solutions,but unfortunately,itgivesriseto a steadystateelongationalviscosity

that divergesat a finiteelongationalrate.This unlikelybehaviorresultsfrom the

infiniteextensibilityof the linearHookean springused to model the polymer. In

order to avoid thisproblem, a nonlinearspringbased on Warner law can be used

to describethe finiteextensibilityof the polymer, leadingto the FENE-P model.

H(RR) where (RR)isThis model is best formulated in terms of the tensor B = kT
the configuration tensor, H the spring constant, k the Boltzmann constant, and T

the absolute temperature. The tensor B satisfies the following equation:

ZB+A 6B
6t = I (5)

InEq. (5),Iisthcunit tensorandZ = (I-(R-_))-I = (1-!_-) -i. The parameter

H Ro _

b = k---_' where Ro represents the maximal possible extension of the polymer, is
a measure of the extensibility of the polymer chain. An equivalent formulation of

Eq. (5) in terms of the tensor a can be obtained using the transformation:

ZB-I

a = --y-- (6)
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_.3 Scaling and parameters

Using uo and 6 as the reference velocity and the reference length, respectively,
p6Uo 6Uo

the flow is characterized by the Reynolds number, Re = - , where v is
7/ u

_uo

the kinematic viscosity of the fluid, and the Weissenberg number, We - 6 ' is a

dimensionless measure of the relaxation time of the polymer. The elasticity number

E - We _ Av is often used to characterize the elasticity of the fluid. In addition
Re 6_

to Re and We, _ and, in the case of the FENE-P model, b are the other model

parameters.

_.4 Numerical method

The simulations reported in this study were performed by solving the vorticity

equation:

0 x V2]w 0 _ (1 - x).( 02 02 02Oy2)a12--O-_-_y(a22--al,)] (7)

coupled with the appropriate stress equations. In the present study, we are inter-

ested in the forced, temporally growing mixing layer. The initial flow is composed

of the viscously spreading tanh vorticity profile and the corresponding base-state

polymer stress, seeded with the wave that, according to linear stability analysis

(Azaiez & Homsy 1993), has the largest growth rate.

The dynamical equations are solved using a pseudo-spectral method in which the

flow variables are expanded in a modified Hartley series (Zimmerman & Homsy

(1991)). The resulting set of ordinary differential equations is advanced in time

using an operator splitting algorithm (see e.g. Tan & Homsy (1987)). In addition

to those with the spectral code, a few simulations have been conducted using a

finite difference scheme second order accurate in space and in time. A description

of the scheme can be found in the paper by Orlandi et al. (1992). The results

obtained from these two codes were always in total concordance. The codes were

validated by comparing with the linear stability results (Azalez &_ Homsy (1993))

and by checking that they reproduced the same results as the Newtonian code when

we set x = 1.

A typical run for the roll-up of the non-Newtonian fluid required 128x128 spectral

modes and a time step At = 0.04. This resolution gives satisfactory results at

moderate values of the Weissenberg number and was refined for large values of lVe.

Throughout this study, the value of the parameter _ is fixed to 0.5.

3. Results

3.1 The Oldroyd-B model

The vortieity and stress equations for the Oldroyd-B model have been solved nu-

merically for various values of We, and for Re = 100. For small values of We (We _ 1),

the flow does not show any noticeable changes from the Newtonian case. Numer-

ical simulations at moderately high We (We ,,_ 10) developed an instability that
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FIGURE 1. Vorticity contours for Re=lO0.
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lead to the divergence of the code. We examined the origin of this instability by

looking at the evolution of the different terms in the polymer stress equations. The

analysis of these terms showed that the instability is associated with a deficiency

of the Oldroyd-B model that allows stresses to grow indefinitely. The instability

starts to develop first in the braid regions where the product of the Weissenberg
number and the dimensionless local extensional rate exceeds unity. In these regions,

and due to high extensional rates, the chain is stretched rapidly, and because of its

large relaxation time associated with the high We, it is prevented from coiling up

as quickly as its stretching. As a consequence, the chain gets extended indefinitely

and the stresses grow exponentially. The intense build-up of the stresses ultimately

leads to the divergence of the numerical code.

3._ The FENE-P model

Unlike the Oldroyd-B model, the FENE-P model does not allow infinite extension

of the spring used to model the polymer, and as we have seen, the maximal extension

of the spring is characterized by the parameter b. The viscoelastic mixing layer has

been successfully simulated for various values of the three parameters, Re, E, and

b. In what follows, we describe results for the two mechanisms of instability of the

two-dimensional mixing layer, namely the roll-up and the pairing of the flow.

3._.1 Roll-up

We explored values of the Reynolds number between 50 and 400, varied the

Weissenberg number between 20 and 200, and examined values of b between 1 and

20. Figure 1 shows a time sequence of the roll-up of the flow for the Newtonian case
and for the FENE-P model. As it has been experimentally documented (Riediger

1988), we observed a trend for smaller values of the minimal (negative) vorticity in

the case of the viscoelastic flow, as well as a tendency for the vortex structures to

be more compact and to have longer llfe times than in the Newtonian fluid. The

global structure of the flow as well as the roll-up time are basically the same for both

fluids. However, the local distribution of the vorticity is affected by the presence of

the viscoelasticity in the flow with high gradients tending to appear in some parts of

the flow, namely in the braids. The evolution of the absolute value of the minimal

vorticity at various streamwise locations confirms the conclusion of the tendency to

have more spanwise vorticity remaining in the braid region.

The examination of contours of the first normal polymer stress (B11 -B2_) showed

that there is a spatial correlation between the regions of intensification of the vor-

ticity gradients and those where there is a build-up of the first normal polymer

stress.

In order to understand the reasons why the global structure of the roll-up remains

unchanged, we examined the evolution of the polymer stresses in connection with

that of the vorticity (Figure 2). This study revealed that the first normal stresses

reach a quasi-steady state characterized by the absence of any extensional forces

and a balance between shearing forces and the polymer relaxation stresses, and it

is interesting to note the spatial relationships between vorticity and normal stresses

that characterize this quasi-steady state. After the first stage of roll-up, most of the
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vorticity is entrained into the vortex core with only little remaining in the braids,

while the stress fields are highest in regions of highest shear, which tend to lie in

nearly irrotational regions surrounding the vortex core. This feature may be key to

explaining why the global flow structure is unaffected by viscoelasticity.
Simulations at various values of the parameters E and b show that the estab-

lishment of the steady state for (Bll - B22) is, at least for the range of E and b

examined, a common trend of the evolution of the polymer stresses in free shear
flows and is insensitive to the value of E or b. A detailed discussion of this steady

state is found in the article by Azaiez & Homsy (1994)

3._._ Pairing

We examined the pairing of the flow for Re = 50 and various values of E and b. In
the bulk of the simulations, we used 256 grid points in the streamwise direction and

128 grid points in the transverse direction and a time step At = 0.02. Simulations at

large E (E ,-_ 2) required a finer resolution and we used 256x256 spectral modes and
a time step At = 0.01. Figure 3 shows a time sequence of the vortieity contours for
the Newtonian fluid with Re=50 and the non-Newtonian fluid with Re = 50, E = 1

and b = 5. In the early stage, the flow shows the same trends for intensification

of the vorticity that we have encountered in the case of the single roll-up. Later
the two vortices start their orbital motion, with the tendency for a slightly faster

rotational motion in the case of the viscoelastic fluid. Note that during roll-up as

well as pairing, the vortices are more diffuse in the case of the Newtonian fluid and
that the maximal absolute value of the vorticity over the whole flow is larger for
the viscoelastic fluid. We attribute the faster rotation of the two parent vortices

around each to the vorticity gradients that develop in the braids during the roll-up

of the flow. These gradients lead to a stronger outer field between the two parent
vortices that enhances the mutually induced rotational motion of the two vortices

(Azaiez & Homsy (1994))

4. Conclusion

In the present study, we examined the instability of the plane, incompressible,

non-Newtonian mixing layer, focusing on simulations with high Re and We. Numer-
ical simulations using the Oldroyd-B model developed an instability for moderate

We. We examined the origin of this instability by looking at the evolution of the dif-

ferent terms in the stress equations, which showed that the instability is associated
with a deficiency of the Oldroyd-B model that allows stresses to grow indefinitely.

The instability starts to develop first in the braid regions where the product of

the Weissenberg number and the local extensional rate is larger than one is larger

than one. The unbounded growth and intense build-up of the stresses ultimately

leads to the divergence of the numerical code. Most of the numerical simulations
have been performed with the FENE-P equations which revealed to be the most

appropriate model for the simulation of free shear flows at high elasticity. These

simulations showed that, for the range of parameters examined, the global structure

of the flow as well as the roll-up and pairing times are unchanged from the New-

tonian case. However, local vorticity intensifications associated with the build-up
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of normal stresses have been observed in the braids as well as in the vortex core.

As it has been experimentally documented (Riediger 1988), we observed a trend for

smaller values of the minimal (negative) vorticity in the case of the viscoelastic flow

as well as the tendency for the vortex structures to be more compact and to have

longer life times than in the Newtonian fluid.

The examination of the evolution of the first normal stresses revealed a very

interesting steady state characterized by the absence of any extensional forces and

a balance between shearing forces and the polymer relaxation stresses.
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