29 research outputs found

    Mechanism Underlying Defective Interferon Gamma-Induced IDO Expression in Non-obese Diabetic Mouse Fibroblasts

    Get PDF
    Indoleamine 2,3-dioxygenase (IDO) can locally suppress T cell-mediated immune responses. It has been shown that defective self-tolerance in early prediabetic female non-obese diabetic (NOD) mice can be attributed to the impaired interferon-gamma (IFN-γ)- induced IDO expression in dendritic cells of these animals. As IFN-γ can induce IDO in both dendritic cells and fibroblasts, we asked the question of whether there exists a similar defect in IFN-γ-induced IDO expression in NOD mice dermal fibroblasts. To this end, we examined the effect of IFN-γ on expression of IDO and its enzymatic activity in NOD dermal fibroblasts. The results showed that fibroblasts from either prediabetic (8 wks of age) female or male, and diabetic female or male (12 and 24 wks of age respectively) NOD mice failed to express IDO in response to IFN-γ treatment. To find underlying mechanisms, we scrutinized the IFN- γ signaling pathway and investigated expression of other IFN-γ-modulated factors including major histocompatibility complex class I (MHC-I) and type I collagen (COL-I). The findings revealed a defect of signal transducer and activator of transcription 1 (STAT1) phosphorylation in NOD cells relative to that of controls. Furthermore, we found an increase in MHC-I and suppression of COL-I expression in fibroblasts from both NOD and control mice following IFN-γ treatment; indicating that the impaired response to IFN-γ in NOD fibroblasts is specific to IDO gene. Finally, we showed that an IFN-γ-independent IDO expression pathway i.e. lipopolysaccharide (LPS)-mediated-c-Jun kinase is operative in NOD mice fibroblast. In conclusion, the findings of this study for the first time indicate that IFN-γ fails to induce IDO expression in NOD dermal fibroblasts; this may partially be due to defective STAT1 phosphorylation in IFN-γ-induced-IDO signaling pathway

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Non-genetic factors associated with the risk of Parkinson’s disease in Iranian patients

    Get PDF
    The aim of this study was to investigate some of non-genetic factors associated with Parkinson’s disease (PD) in a sample of Iranian patients. This case-control study included 75 patients with idiopathic PD and 75 control patients. The patients in the control group were found to have drunk more glasses of tea per day than the case group before the onset of their problem (p=0.019). Every extra glass of tea per day decreased the risk of PD by 0.8 times (OR=0.8, 95%CI=0.73-0.97, p=0.02). Each cup of coffee per week decreased the chance of developing PD by 0.5 times (OR=0.5, 95%CI=0.28-0.9, p=0.021). A previous history of evening work increased PD risk by 4.6 times (OR=4.6, 95%CI=1.29-16.86, p=0.019) while major stressful events increased it by 13.5 times (OR=13.5, 95%CI=4.7-38.1, p=0.0001). In conclusion, coffee and tea consumption may exert a protective effect against PD, while evening work and stress may be risk factors for the development of the disease

    Extracellular 14-3-3 from human lung epithelial cells enhances MMP-1 expression

    No full text
    Airway remodelling in asthma involves various mediators modulating the production/breakdown of collagen by lung fibroblasts. Matrix metalloproteinase-1 (MMP-1) plays an important role in collagen breakdown. We recently showed that epithelial cell-derived extracellular form of 14-3-3σ is an important inducer of MMP-1 expression in skin fibroblasts. Thus, we hypothesized that 14-3-3 proteins are important regulators of MMP-1 expression in the respiratory airway. We examined the presence of extracellular 14-3-3 proteins in conditioned media obtained from primary lung epithelial cells, A549 and HS24 cells, and their effect on MMP-1 expression by lung fibroblasts (IMR-90). In addition, we evaluated IMR-90 response to 14-3-3 proteins in the presence of transforming growth factor-β1 (TGF-β1), a cytokine known to decrease MMP-1 expression by fibroblasts. Extracellular 14-3-3α/β, but not -σ, is released by the human-derived lung epithelial cell lines, A549 and HS24. Unlike dermal fibroblasts, IMR-90 cells do not produce MMP-1 in response to 14-3-3σ. Conversely, MMP-1 production was induced following treatment of IMR-90 with recombinant or lung epithelial cell-derived 14-3-3α/β. These findings were also confirmed using primary human bronchial epithelial cells and lung fibroblasts obtained from non-asthmatic patients. The MMP-1-inducing effect of 14-3-3α/β on IMR-90 was not inhibited by TGF-β1. Lung epithelial cell-derived 14-3-3α/β has a potent MMP-1-inducing effect on airway fibroblasts. Modulation of MMP-1 by 14-3-3α/β, may be important in the alteration of collagenase production associated with airway remodelling in obstructive lung diseases. Our data indicate that 14-3-3 proteins may be potential targets for future therapeutic strategies aimed at modulating tissue remodelling in asthma

    Immuno-Regulatory Function of Indoleamine 2,3 Dioxygenase through Modulation of Innate Immune Responses

    Get PDF
    <div><p>Successful long-term treatment of type-1 diabetes mainly relies on replacement of β-cells via islet transplantation. Donor shortage is one of the main obstacles preventing transplantation from becoming the treatment of choice. Although animal organs could be an alternative source for transplantation, common immunosuppressive treatments demonstrate low efficacy in preventing xenorejection. Immunoprotective effects of indoleamine 2,3-dioxygenase (IDO) on T-cell mediated allorejection has been extensively studied. Our studies revealed that IDO expression by fibroblasts, induced apoptosis in T-cells while not affecting non-immune cell survival/function. Since macrophages play a pivotal role in xenograft rejection, herein we investigated the effect of IDO-induced tryptophan deficiency/kynurenine accumulation on macrophage function/survival. Moreover, we evaluated the local immunosuppressive effect of IDO on islet-xenograft protection. Our results indicated that IDO expression by bystander fibroblasts significantly reduced the viability of primary macrophages via apoptosis induction. Treatment of peritoneal macrophages by IDO-expressing fibroblast conditioned medium significantly reduced their proinflammatory activity through inhibition of iNOS expression. To determine whether IDO-induced tryptophan starvation or kynurenine accumulation is responsible for macrophage apoptosis and inhibition of their proinflammatory activity, Raw264.7 cell viability and proinflammatory responses were evaluated in tryptophan deficient medium or in the presence of kynurenine. Tryptophan deficiency, but not kynurenine accumulation, reduced Raw264.7 cell viability and suppressed their proinflammatory activity. Next a three-dimensional islet-xenograft was engineered by embedding rat islets within either control or IDO–expressing fibroblast-populated collagen matrix. Islets morphology and immune cell infiltration were then studied in the xenografts transplanted into the C57BL/6 mouse renal sub-capsular space. Local IDO significantly decreased the number of infiltrating macrophages (11±1.47 vs. 70.5±7.57 cells/HPF), T-cells (8.75±1.03 vs. 75.75±5.72 cells/HPF) and iNOS expression in IDO-expressing xenografts versus controls. Islet morphology remained intact in IDO-expressing grafts and islets were strongly stained for insulin/glucagon compared to control. These findings support the immunosuppressive role of IDO on macrophage-mediated xeno-rejection.</p></div

    Effect of tryptophan deficiency and kynurenine accumulation on Raw264.7 cell, fibroblast and Jurkat cell proliferation.

    No full text
    <p>(A) Determination of the tryptophan deficiency effect on Raw264.7 cells proliferation and viability. Raw264.7cells were either cultured in RPMI, tryptophan-deficient medium (Trp-D) or tryptophan-deficient medium supplemented with 50 µg/ml tryptophan (Trp-D+Trp). MMT assay was done after 24 hours of treatment. (B) Evaluation of the kynurenine accumulation effect on Raw264.7 cells proliferation using MTT assay following 24 hours of treatment. (C) Evaluation of the effect of the tryptophan deficiency and high levels of kynurenine on Jurkat cells (solid bars) and dermal fibroblast (open bars) proliferation and viability using MTT assay after 24 hours of treatment. Data is mean±SEM of four independent experiments. (*P-value<0.05 and **P-value<0.01, n = 4).</p

    Specific activation of GCN2 kinase pathway mediates selective suppressive effects of tryptophan deficiency on Raw264.7cells.

    No full text
    <p>(A) Raw264.7 cells were cultured in RPMI (R), tryptophan-deficient medium (T) or tryptophan-deficient medium supplemented with 50 µg/ml tryptophan (T+T) for 24 hours. CHOP expression was analyzed by Western blotting. β-actin was used as the protein loading control. Jurkat cells and dermal fibroblasts were cultured in the same conditions. Results are representative of five independent experiments. (B) CHOP/β-actin expression ratio was calculated in Raw264.7 cells. Data is mean±SEM of five independent experiments (*P-value<0.05 and **P-value<0.01, n = 5).</p

    Inhibition of iNOS expression and NO production by tryptophan deficiency in IFN-γ+LPS stimulated RAW264.7 cells.

    No full text
    <p>(A) Q-PCR analysis of iNOS mRNA expression. Raw264.7 cells were pre-incubated in RPMI, tryptophan-deficient medium (Trp-D), tryptophan-deficient medium supplemented with 50 µg/ml tryptophan or RPMI supplemented with increasing concentrations of kynurenine (10, 25, and 50 µg/ml) for an hour. Cells were then stimulated with IFN-γ+LPS for 12 hours. Cells were collected, and iNOS expression was determined by Q-PCR after RNA extraction and cDNA synthesis. GAPDH was used as the reference gene. The relative expression of iNOS mRNA is evaluated by Q-PCR in Raw264.7 cells cultured and treated in different conditions. The iNOS expression was normalized to the GAPDH expression level (B) Raw264.7 cells were cultured and stimulated for 24 hours as described above. The concentration of released nitric oxide was evaluated in the cell supernatant by the Griess method. Data is mean±SEM of four independent experiments (**P-value<0.01, n = 4).</p

    Infiltration of composite islet xenografts by F4/80<sup>+</sup> and CD3<sup>+</sup> cells.

    No full text
    <p>Three dimensional grafts were constructed by embedding isolated rat islets in the collagen matrix populated with IDO-expressing or control B6 mouse fibroblasts. Graft-recipient mice were killed 10 days after transplantation of the composite xenografts. Retrieved composite islet grafts were then subjected to H&E staining (A) and double immuno-fluorescence staining for F4/80 and insulin (B) or CD3 and insulin (C). The arrows indicate infiltrated immune cells. Quantitative analysis of F4/80<sup>+</sup> macrophages (D) and CD3<sup>+</sup> T cells (E) infiltration into islet xenotransplants. Graphs show manual counting scores±SEM per high-power field (HPF, x400). Data derived from the examination of four different HPFs per tissue section (**P-value<0.01, n = 4).</p
    corecore