24 research outputs found
Cytomegalovirus, Epstein-Barr virus and varicella zoster virus infection in the first two years of life: a cohort study in Bradford, UK.
BACKGROUND: Cytomegalovirus (CMV), Epstein Barr virus (EBV) and varicella-zoster virus (VZV) are common herpesviruses frequently acquired in childhood, which establish persistent, latent infection and are likely to impact the developing immune system. Little is known about the epidemiology of CMV and EBV infections in contemporary UK paediatric populations, particularly whether age at infection differs by ethnic group. METHODS: Children enrolled in the Born in Bradford Allergy and Infection Study had a blood sample taken and a questionnaire completed at 12 and 24 months of age. Ordered logistic regression quantified associations between ethnicity and other risk factors and age at CMV/EBV/VZV infection (<12 months, 12-24 months, uninfected at 24 months). RESULTS: Pakistani children (n = 472) were more likely to be infected with CMV and EBV at a younger age than White British children (n = 391) (CMV: adjusted odds ratio (OR) 2.53, 95% confidence interval (CI) 1.47-4.33; EBV: adjusted OR 2.16, 95% CI 1.43-3.26). Conversely, Pakistani children had lower odds of being VZV infected in the second year than White British children (adjusted OR 0.57, 95% CI 0.33-0.97). There was a strong association between increasing birth order and later CMV infection in Pakistani children. CONCLUSIONS: We report large differences in CMV and EBV incidence in the first 2 years between Pakistani and White British children born in Bradford, which cannot be explained by differences in risk factors for infection. Our data will inform the optimum schedule for future CMV and EBV vaccination programmes
Metabolomics datasets in the Born in Bradford cohort [version 2; peer review: 1 approved, 1 approved with reservations].
Metabolomics is the quantification of small molecules, commonly known as metabolites. Collectively, these metabolites and their interactions within a biological system are known as the metabolome. The metabolome is a unique area of study, capturing influences from both genotype and environment. The availability of high-throughput technologies for quantifying large numbers of metabolites, as well as lipids and lipoprotein particles, has enabled detailed investigation of human metabolism in large-scale epidemiological studies. The Born in Bradford (BiB) cohort includes 12,453 women who experienced 13,776 pregnancies recruited between 2007-2011, their partners and their offspring. In this data note, we describe the metabolomic data available in BiB, profiled during pregnancy, in cord blood and during early life in the offspring. These include two platforms of metabolomic profiling: nuclear magnetic resonance and mass spectrometry. The maternal measures, taken at 26-28 weeks’ gestation, can provide insight into the metabolome during pregnancy and how it relates to maternal and offspring health. The offspring cord blood measurements provide information on the fetal metabolome. These measures, alongside maternal pregnancy measures, can be used to explore how they may influence outcomes. The infant measures (taken around ages 12 and 24 months) provide a snapshot of the early life metabolome during a key phase of nutrition, environmental exposures, growth, and development. These metabolomic data can be examined alongside the BiB cohorts’ extensive phenotype data from questionnaires, medical, educational and social record linkage, and other ‘omics data
Maternal iodine status in a multi-ethnic UK birth cohort:Associations with child cognitive and educational development
Background: Maternal iodine requirements increase during pregnancy to supply thyroid hormones critical for fetal neurodevelopment. Iodine insufficiency may result in poorer cognitive or child educational outcomes but current evidence is sparse and inconsistent. Objectives: To quantify the association between maternal iodine status and child educational outcomes. Methods: Urinary iodine concentrations (UIC) and iodine/creatinine ratios (I:Cr) were measured in 6971 mothers at 26-28 weeks' gestation participating in the Born in Bradford cohort. Maternal iodine status was examined in relation to child school achievement (early years foundation stage (EYFS), phonics, and Key Stage 1 (KS1)), other learning outcomes, social and behavioural difficulties, and sensorimotor control in 5745 children aged 4-7 years. Results: Median (interquartile range) UIC was 76 µg/L (46, 120), and I:Cr was 83 µg/g (59, 121). Overall, there was no strong or consistent evidence to support associations between UIC or I:Cr and neurodevelopmental outcomes. For instance, predicted EYFS and phonics scores (primary outcomes) at the 25th vs 75th I:Cr percentiles (99% confidence intervals) were similar, with no evidence of associations: EYFS scores were 32 (99% CI 31, 33) and 33 (99% CI 32, 34), and phonics scores were 34 (99% CI 33, 35) and 35 (99% CI 34, 36), respectively. Conclusions: In the largest single study of its kind, there was little evidence of detrimental neurodevelopmental outcomes in children born to pregnant women with iodine insufficiency as defined by World Health Organization–outlined thresholds. Alternative functional biomarkers for iodine status in pregnancy and focused assessment of other health outcomes may provide additional insight.</p
Maternal iodine status, intrauterine growth, birth outcomes and congenital anomalies in a UK birth cohort.
BACKGROUND: Severe iodine insufficiency in pregnancy has significant consequences, but there is inadequate evidence to indicate what constitutes mild or moderate insufficiency, in terms of observed detrimental effects on pregnancy or birth outcomes. A limited number of studies have examined iodine status and birth outcomes, finding inconsistent evidence for specific outcomes. METHODS: Maternal iodine status was estimated from spot urine samples collected at 26-28 weeks' gestation from 6971 mothers in the Born in Bradford birth cohort. Associations with outcomes were examined for both urinary iodine concentration (UIC) and iodine-to-creatinine ratio (I:Cr). Outcomes assessed included customised birthweight (primary outcome), birthweight, small for gestational age (SGA), low birthweight, head circumference and APGAR score. RESULTS: There was a small positive association between I:Cr and birthweight in adjusted analyses. For a typical participant, the predicted birthweight centile at the 25th percentile of I:Cr (59 μg/g) was 2.7 percentage points lower than that at the 75th percentile of I:Cr (121 μg/g) (99% confidence interval (CI) 0.8 to 4.6), birthweight was predicted to be 41 g lower (99% CI 13 to 69) and the predicted probability of SGA was 1.9 percentage points higher (99% CI 0.0 to 3.7). There was no evidence of associations using UIC or other birth outcomes, including stillbirth, preterm birth, ultrasound growth measures or congenital anomalies. CONCLUSION: Lower maternal iodine status was associated with lower birthweight and greater probability of SGA. Whilst small, the effect size for lower iodine on birthweight is comparable to environmental tobacco smoke exposure. Iodine insufficiency is avoidable, and strategies to avoid deficiency in women of reproductive age should be considered. TRIAL REGISTRATION: ClinicalTrials.gov NCT03552341. Registered on June 11, 2018
Maternal iodine status in a multi-ethnic UK birth cohort: associations with autism spectrum disorder.
BACKGROUND: Maternal iodine requirements increase during pregnancy to supply thyroid hormones essential for fetal brain development. Maternal iodine deficiency can lead to hypothyroxinemia, a reduced fetal supply of thyroid hormones which, in the first trimester, has been linked to an increased risk of autism spectrum disorder (ASD) in the child. No study to date has explored the direct link between maternal iodine deficiency and diagnosis of ASD in offspring. METHODS: Urinary iodine concentrations (UIC) and iodine/creatinine ratios (I:Cr) were measured in 6955 mothers at 26-28 weeks gestation participating in the Born in Bradford (BiB) cohort. Maternal iodine status was examined in relation to the probability of a Read (CTV3) code for autism being present in a child's primary care records through a series of logistic regression models with restricted cubic splines. RESULTS: Median (inter-quartile range) UIC was 76 μg/L (46, 120) and I:Cr was 83 μg/g (59, 121) indicating a deficient population according to WHO guidelines. Ninety two children (1·3%) in our cohort had received a diagnosis of ASD by the census date. Overall, there was no evidence to support an association between I:Cr or UIC and ASD risk in children aged 8-12 years (p = 0·3). CONCLUSIONS: There was no evidence of an increased clinical ASD risk in children born to mothers with mild-to-moderate iodine deficiency at 26 weeks gestation. Alternative functional biomarkers of exposure and a wider range of conditions may provide further insight
Recommended from our members
Maternal iodine status, intrauterine growth, birth outcomes and congenital anomalies in a UK birth cohort
Abstract: Background: Severe iodine insufficiency in pregnancy has significant consequences, but there is inadequate evidence to indicate what constitutes mild or moderate insufficiency, in terms of observed detrimental effects on pregnancy or birth outcomes. A limited number of studies have examined iodine status and birth outcomes, finding inconsistent evidence for specific outcomes. Methods: Maternal iodine status was estimated from spot urine samples collected at 26–28 weeks’ gestation from 6971 mothers in the Born in Bradford birth cohort. Associations with outcomes were examined for both urinary iodine concentration (UIC) and iodine-to-creatinine ratio (I:Cr). Outcomes assessed included customised birthweight (primary outcome), birthweight, small for gestational age (SGA), low birthweight, head circumference and APGAR score. Results: There was a small positive association between I:Cr and birthweight in adjusted analyses. For a typical participant, the predicted birthweight centile at the 25th percentile of I:Cr (59 μg/g) was 2.7 percentage points lower than that at the 75th percentile of I:Cr (121 μg/g) (99% confidence interval (CI) 0.8 to 4.6), birthweight was predicted to be 41 g lower (99% CI 13 to 69) and the predicted probability of SGA was 1.9 percentage points higher (99% CI 0.0 to 3.7). There was no evidence of associations using UIC or other birth outcomes, including stillbirth, preterm birth, ultrasound growth measures or congenital anomalies. Conclusion: Lower maternal iodine status was associated with lower birthweight and greater probability of SGA. Whilst small, the effect size for lower iodine on birthweight is comparable to environmental tobacco smoke exposure. Iodine insufficiency is avoidable, and strategies to avoid deficiency in women of reproductive age should be considered. Trial registration: ClinicalTrials.gov NCT03552341. Registered on June 11, 2018
Immunological imprinting of humoral immunity to SARS-CoV-2 in children
Omicron variants of SARS-CoV-2 are globally dominant and infection rates are very high in children. We measure immune responses following Omicron BA.1/2 infection in children aged 6-14 years and relate this to prior and subsequent SARS-CoV-2 infection or vaccination. Primary Omicron infection elicits a weak antibody response with poor functional neutralizing antibodies. Subsequent Omicron reinfection or COVID-19 vaccination elicits increased antibody titres with broad neutralisation of Omicron subvariants. Prior pre-Omicron SARS-CoV-2 virus infection or vaccination primes for robust antibody responses following Omicron infection but these remain primarily focussed against ancestral variants. Primary Omicron infection thus elicits a weak antibody response in children which is boosted after reinfection or vaccination. Cellular responses are robust and broadly equivalent in all groups, providing protection against severe disease irrespective of SARS-CoV-2 variant. Immunological imprinting is likely to act as an important determinant of long-term humoral immunity, the future clinical importance of which is unknown
Determinants of the urinary and serum metabolome in children from six European populations
Background Environment and diet in early life can affect development and health throughout the life course. Metabolic phenotyping of urine and serum represents a complementary systems-wide approach to elucidate environment–health interactions. However, large-scale metabolome studies in children combining analyses of these biological fluids are lacking. Here, we sought to characterise the major determinants of the child metabolome and to define metabolite associations with age, sex, BMI and dietary habits in European children, by exploiting a unique biobank established as part of the Human Early-Life Exposome project (http://www.projecthelix.eu). Methods Metabolic phenotypes of matched urine and serum samples from 1192 children (aged 6–11) recruited from birth cohorts in six European countries were measured using high-throughput 1H nuclear magnetic resonance (NMR) spectroscopy and a targeted LC-MS/MS metabolomic assay (Biocrates AbsoluteIDQ p180 kit). Results We identified both urinary and serum creatinine to be positively associated with age. Metabolic associations to BMI z-score included a novel association with urinary 4-deoxyerythronic acid in addition to valine, serum carnitine, short-chain acylcarnitines (C3, C5), glutamate, BCAAs, lysophosphatidylcholines (lysoPC a C14:0, lysoPC a C16:1, lysoPC a C18:1, lysoPC a C18:2) and sphingolipids (SM C16:0, SM C16:1, SM C18:1). Dietary-metabolite associations included urinary creatine and serum phosphatidylcholines (4) with meat intake, serum phosphatidylcholines (12) with fish, urinary hippurate with vegetables, and urinary proline betaine and hippurate with fruit intake. Population-specific variance (age, sex, BMI, ethnicity, dietary and country of origin) was better captured in the serum than in the urine profile; these factors explained a median of 9.0% variance amongst serum metabolites versus a median of 5.1% amongst urinary metabolites. Metabolic pathway correlations were identified, and concentrations of corresponding metabolites were significantly correlated (r > 0.18) between urine and serum. Conclusions We have established a pan-European reference metabolome for urine and serum of healthy children and gathered critical resources not previously available for future investigations into the influence of the metabolome on child health. The six European cohort populations studied share common metabolic associations with age, sex, BMI z-score and main dietary habits. Furthermore, we have identified a novel metabolic association between threonine catabolism and BMI of children
Metabolomics datasets in the Born in Bradford cohort [version 1; peer review: awaiting peer review]
Metabolomics is the quantification of small molecules, commonly known as metabolites. Collectively, these metabolites and their interactions within a biological system are known as the metabolome. The metabolome is a unique area of study, capturing influences from both genotype and environment. The availability of high-throughput technologies for quantifying large numbers of metabolites, as well as lipids and lipoprotein particles, has enabled detailed investigation of human metabolism in large-scale epidemiological studies. The Born in Bradford (BiB) cohort includes 12,453 women who experienced 13,776 pregnancies recruited between 2007-2011, their partners and their offspring. In this data note, we describe the metabolomic data available in BiB, profiled during pregnancy, in cord blood and during early life in the offspring. These include two platforms of metabolomic profiling: nuclear magnetic resonance and mass spectrometry. The maternal measures, taken at 26-28 weeks� gestation, can provide insight into the metabolome during pregnancy and how it relates to maternal and offspring health. The offspring cord blood measurements provide information on the fetal metabolome. These measures, alongside maternal pregnancy measures, can be used to explore how they may influence outcomes. The infant measures (taken around ages 12 and 24 months) provide a snapshot of the early life metabolome during a key phase of nutrition, environmental exposures, growth, and development. These metabolomic data can be examined alongside the BiB cohorts� extensive phenotype data from questionnaires, medical, educational and social record linkage, and other �omics data.</ns3:p