17 research outputs found

    A systematic review of mental health outcome measures for young people aged 12 to 25 years

    Full text link

    Toward Information-Driven and Risk-Bounded Autonomy for Adaptive Science and Exploration

    No full text
    © 2020 The MITRE Corporation. All Rights Reserved. While the primary purpose of robotic space exploration systems is to gather scientific data, it is equally important that engineering operations are performed and engineering constraints are respected in order to prolong the mission life and ensure the integrity of the observations taken. However, science and engineering operations are often at odds with each other as attempting to obtain the “best” data may violate engineering operations constraints and place the mission at risk. Historically, mission systems engineering has separated the process of planning for science from engineering operations, with the engineering operations constrained to support the science measurement plan with acceptable risk. This task division leads to multiple design iterations between the science and engineering operations which results in compromised, conservative operations that reduce science return and are more brittle than desired. To overcome these limitations, we present an approach for autonomous mission planning that explicitly models and reasons about the coupling between science and engineering operations, resulting in higher science return, while maintaining acceptable levels of risk. Our approach is to develop an information-driven, risk-bounded plan executive that is capable of producing missions satisfying the goals and constraints expressed in these programs. In this paper, we describe in detail the risk-bounded, information-driven execution problem and lay out the architecture used in our information-directed plan executive ‘Enterprise’. We then show the performance of the current version of Enterprise on two space exploration scenarios. Finally, we conclude with thoughts on future work, including on the design of a proposed information-theoretic language that will allow operators and scientists to specify their objectives in terms of questions about scientific phenomena or the configuration of the space system

    A Hierarchical Bayesian Model of the Influence of Run Length on Sequential Predictions

    No full text
    Two models of how people predict the next outcome in a sequence of binary events were developed and compared on the basis of gambling data from a lab experiment using hierarchical Bayesian techniques. The results from a student sample (N = 39) indicated that a model that considers run length (“drift model”)—that is, how often the same event has previously occurred in a row—provided a better description of the data than did a stationary model taking only the immediately prior event into account. Both, expectation of negative and of positive recency was observed, and these tendencies mostly grew stronger with run length. For some individuals, however, the relationship was reversed, leading to a qualitative shift from expecting positive recency for short runs to expecting negative recency for long runs. Both patterns could be accounted for by the drift model but not the stationary model. The results highlight the importance of applying hierarchical analyses that provide both group- and individual-level estimates. Further extensions and applications of the approach in the context of the prediction literature are discussed

    The Structure of the Talin/Integrin Complex at a Lipid Bilayer: An NMR and MD Simulation Study

    Get PDF
    Integrins are cell surface receptors crucial for cell migration and adhesion. They are activated by interactions of the talin head domain with the membrane surface and the integrin ÎČ cytoplasmic tail. Here, we use coarse-grained molecular dynamic simulations and nuclear magnetic resonance spectroscopy to elucidate the membrane-binding surfaces of the talin head (F2-F3) domain. In particular, we show that mutations in the four basic residues (K258E, K274E, R276E, and K280E) in the F2 binding surface reduce the affinity of the F2-F3 for the membrane and modify its orientation relative to the bilayer. Our results highlight the key role of anionic lipids in talin/membrane interactions. Simulation of the F2-F3 in complex with the α/ÎČ transmembrane dimer reveals information for its orientation relative to the membrane. Our studies suggest that the perturbed orientation of talin relative to the membrane in the F2 mutant would be expected to in turn perturb talin/integrin interactions
    corecore