103 research outputs found

    Sensory processing patterns, coping strategies, and quality of life among patients with unipolar and bipolar disorders.

    Get PDF
    OBJECTIVE: To compare sensory processing, coping strategies, and quality of life (QoL) in unipolar and bipolar patients; to examine correlations between sensory processing and QoL; and to investigate the relative contribution of sociodemographic characteristics, sensory processing, and coping strategies to the prediction of QoL. METHODS: Two hundred sixty-seven participants, aged 16-85 years (53.6+/-15.7), of whom 157 had a diagnosis of unipolar major depressive disorder and 110 had bipolar disorder type I and type II, completed the Adolescent/Adult Sensory Profile, Coping Orientations to Problems Experienced, and 12-item Short-Form Health Survey version 2. The two groups were compared with multivariate analyses. RESULTS: The unipolar and bipolar groups did not differ concerning sensory processing, coping strategies, or QoL. Sensory processing patterns correlated with QoL independently of mediation by coping strategies. Correlations between low registration, sensory sensitivity, sensation avoidance, and reduced QoL were found more frequently in unipolar patients than bipolar patients. Higher physical QoL was mainly predicted by lower age and lower sensory sensitivity, whereas higher mental QoL was mainly predicted by coping strategies. CONCLUSION: While age may predict physical QoL, coping strategies predict mental QoL. Future studies should further investigate the impact of sensory processing and coping strategies on patients' QoL in order to enhance adaptive and functional behaviors related to affective disturbances

    Composition, diversity and structure of vascular epiphytes in two contrasting Central Amazonian floodplain ecosystems

    Get PDF
    Research focusing on assemblages of vascular epiphytes in the Amazon are scarce. This is especially true for Amazonian floodplain forests, for which only two previous studies have been published. We compared composition, richness and structure of epiphyte assemblages in white-water and black-water floodplains (várzea and igapó) in Central Amazonia in order to close knowledge gaps concerning the distribution and richness of epiphytes. We established sixteen 25x25 m plots in each forest type, and counted and identified all species of vascular epiphytes occurring on trees with a diameter at breast height (DBH) ≥10 cm. We observed a clear distinction in epiphytic species composition (r2=0.83, p=0.001) and diversity (t=3.24, P=0.003) between the two environments, with 61.5 % of species being restricted to várzea, 22.9 % restricted to igapó and only 15.6 % common to both ecosystems. The floodplains were also structurally different for the most abundant species and those with the highest Epiphytic Importance Value (IVe). The diversity of trees did not influence the epiphyte diversity in either ecosystem. The forests were found to differ in the composition, diversity and structure of their epiphytic assemblages, which must be taken into account when designing conservation action plans for these ecosystems and for their vascular epiphytes

    Effects of hyperbaric oxygen on Leishmania amazonensis promastigotes and amastigotes

    No full text
    In the present study, we evaluated the effects of hyperbaric oxygen (HBO) exposure in both Leishmania amazonensis life stages (promastigotes and amastigotes) and on macrophage cultures infected with the parasite. HBO treatment protocols, which can be tolerated by humans and animals, induced irreversible metabolic damage and affected parasite morphology, growth and ability to transform. The observation that the antioxidant N-acetylcysteine (NAC) prevents some of these deleterious effects indicated an involvement of oxidative stress during parasite HBO exposure. In addition, HBO exposed L. amazonensis-infected macrophage cultures showed reduction of the percentage of infected cells and of the number of intracellular parasites per cell. Thus, the demonstration that HBO, a therapy used in the management of different diseases, is toxic for both L. amazonensis life stages and can alter macrophage susceptibility to the infection encourages further studies of this therapy in animal models of Leishmania infection. (C) 2004 Elsevier Ireland Ltd. All rights reserved.5411

    Mobile spinal ependymoma

    No full text

    Cholesterol granuloma of the lateral ventricle

    No full text
    corecore