311 research outputs found

    Metadiffusers for quasi-perfect and broadband sound diffusion

    Get PDF
    Sound diffusion refers to the ability of a surface to evenly scatter sound energy in both time and space. However, omnidirectional radiation of sound, or perfect diffusion, can be impractical or difficult to reach under traditional means. This is due to the considerable size required by, and the lack of tunability, of typical quarter-wavelength scattering strategies necessary for producing the required complexity of the surface acoustic impedance. As such, it can be a challenge to design sound diffusing structures that can display near perfect diffusion performance within slim dimensions. In this work, we propose a method for obtaining quasi-perfect and broadband sound diffusion coefficients using deep-subwavelength acoustic diffusers, i.e., metadiffusers. The relation between the geometry of the metasurface, the bandwidth and the diffusion performance is analytically and numerically studied. For moderate bandwidths, around 1/3 of an octave, the method results in nearly perfect sound diffusion, while for a bandwidth of 2.5 octaves a normalized diffusion coefficient of 0.8 was obtained using panels 1/30th thinner than traditional phase-grating designs. The ratio between the wavelength and the size of the unit cell was identified as a limitation of the performance. This work demonstrates the versatility and effectiveness of metadiffusers to generate diffuse reflections outperforming those of classical sound diffuser

    Scattering evaluation of equivalent surface impedances of acoustic metamaterials in large FDTD volumes using RLC circuit modelling

    Get PDF
    Most simulations involving metamaterials often require complex physics to be solved through refined meshing grids. However, it can prove challenging to simulate the effect of local physical conditions created by said metamaterials into much wider computing sceneries due to the increased meshing load. We thus present in this work a framework for simulating complex structures with detailed geometries, such as metamaterials, into large Finite-Difference Time-Domain (FDTD) computing environments by reducing them to their equivalent surface impedance represented by a parallel-series RLC circuit. This reduction helps to simplify the physics involved as well as drastically reducing the meshing load of the model and the implicit calculation time. Here, an emphasis is made on scattering comparisons between an acoustic metamaterial and its equivalent surface impedance through analytical and numerical methods. Additionally, the problem of fitting RLC parameters to complex impedance data obtained from transfer matrix models is herein solved using a novel approach based on zero crossings of admittance phase derivatives. Despite the simplification process, the proposed framework achieves good overall results with respect to the original acoustic scatterer while ensuring relatively short simulation times over a vast range of frequencies

    Experimental validation of deep-subwavelength diffusion by acoustic metadiffusers

    Get PDF
    International audienceAn acoustic metadiffuser is a subwavelength locally resonant surface relying on slow sound propagation. Its design consists of rigidly backed slotted panels, with each slit being loaded by an array of Helmholtz resonators (HRs). Due to the slow sound properties, the effective thickness of the panel can therefore be dramatically reduced when compared to traditional diffusers made of quarter-wavelength resonators. The aim of this work is to experimentally validate the concept of metadiffusers from the scattering measurements of a specific metadiffuser design, i.e., a Quadratic Residue Metadiffuser (QRM). The experimental results reported herein are in a close agreement with analytical and numerical predictions, therefore showing the potential of metadiffusers for controlling sound diffusion at very low frequencies

    Low temperature atomic layer deposited ZnO photo thin film transistors

    Get PDF
    Cataloged from PDF version of article.ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250°C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80°C; Ion/Ioff ratio is extracted as 7.8 × 109 and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80°C. ID-VGS characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias. © 2014 American Vacuum Society

    Utility of 18F-fluorodeoxyglucose positron emission tomography in presurgical evaluation of patients with epilepsy: A multicenter study

    Get PDF
    OBJECTIVE: 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) is widely used in presurgical assessment in patients with drug-resistant focal epilepsy (DRE) if magnetic resonance imaging (MRI) and scalp electroencephalography (EEG) do not localize the seizure onset zone or are discordant. METHODS: In this multicenter, retrospective observational cohort study, we included consecutive patients with DRE who had undergone FDG-PET as part of their presurgical workup. We assessed the utility of FDG-PET, which was defined as contributing to the decision-making process to refer for resection or intracranial EEG (iEEG) or to conclude surgery was not feasible. RESULTS: We included 951 patients in this study; 479 had temporal lobe epilepsy (TLE), 219 extratemporal epilepsy (ETLE), and 253 epilepsy of uncertain lobar origin. FDG-PET showed a distinct hypometabolism in 62% and was concordant with ictal EEG in 74% in TLE and in 56% in ETLE (p < .001). FDG-PET was useful in presurgical decision-making in 396 patients (47%) and most beneficial in TLE compared to ETLE (58% vs. 44%, p = .001). Overall, FDG-PET contributed to recommending resection in 78 cases (20%) and iEEG in 187 cases (47%); in 131 patients (33%), FDG-PET resulted in a conclusion that resection was not feasible. In TLE, seizure-freedom 1 year after surgery did not differ significantly (p = .48) between patients with negative MRI and EEG-PET concordance (n = 30, 65%) and those with positive MRI and concordant EEG (n = 46, 68%). In ETLE, half of patients with negative MRI and EEG-PET concordance and three quarters with positive MRI and concordant EEG were seizure-free postsurgery (n = 5 vs. n = 6, p = .28). SIGNIFICANCE: This is the largest reported cohort of patients with DRE who received presurgical FDG-PET, showing that FDG-PET is a useful diagnostic tool. MRI-negative and MRI-positive cases with concordant FDG-PET results (with either EEG or MRI) had a comparable outcome after surgery. These findings confirm the significance of FDG-PET in presurgical epilepsy diagnostics

    Experimental validation of deep-subwavelength by diffsuion by acoustic metadiiffusers

    Get PDF
    An acoustic metadiffuser is a subwavelength locally resonant surface relying on slow sound propagation. Its design consists of rigidly backed slotted panels, with each slit being loaded by an array of Helmholtz resonators (HRs). Due to the slow sound properties, the effective thickness of the panel can therefore be dramatically reduced when compared to traditional diffusers made of quarter-wavelength resonators. The aim of this work is to experimentally validate the concept of metadiffusers from the scattering measurements of a specific metadiffuser design, i.e., a Quadratic Residue Metadiffuser (QRM). The experimental results reported herein are in a close agreement with analytical and numerical predictions, therefore showing the potential of metadiffusers for controlling sound diffusion at very low frequencies

    Low temperature atomic layer deposited ZnO photo thin film transistors

    Get PDF
    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250°C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80°C; Ion/Ioff ratio is extracted as 7.8 × 109 and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80°C. ID-VGS characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias. © 2014 American Vacuum Society

    Therapeutic phlebotomy is safe in children with sickle cell anaemia and can be effective treatment for transfusional iron overload

    Get PDF
    Serial phlebotomy was performed on sixty children with sickle cell anaemia, stroke and transfusional iron overload randomized to hydroxycarbamide in the Stroke With Transfusions Changing to Hydroxyurea trial. There were 927 phlebotomy procedures with only 33 adverse events, all of which were grade 2. Among 23 children completing 30 months of study treatment, the net iron balance was favourable (-8.7 mg Fe/kg) with significant decrease in ferritin, although liver iron concentration remained unchanged. Therapeutic phlebotomy was safe and well-tolerated, with net iron removal in most children who completed 30 months of protocol-directed treatment
    corecore