2 research outputs found

    A comparison of the Bering Sea, Gulf of Alaska, and Aleutian Islands large marine ecosystems through food web modeling / by K. Aydin ... [et al.]

    Get PDF
    Detailed mass balance food web models were constructed to compare ecosystem characteristics for three Alaska regions: the eastern Bering Sea (EBS), the Gulf of Alaska (GOA), and the Aleutian Islands (AI). This paper documents the methods and data used to construct the models and compares ecosystem structure and indicators across models. The common modeling framework, including biomass pool and fishery definitions, resulted in comparable food webs for the three ecosystems which showed that they all have the same apex predator—the Pacific halibut longline fishery. However, despite the similar methods used to construct the models, the data from each system included in the analysis clearly define differences in food web structure which may be important considerations for fishery management in Alaska ecosystems. The results showed that the EBS ecosystem has a much larger benthic influence in its food web than either the GOA or the AI. Conversely, the AI ecosystem has the strongest pelagic influence in its food web relative to the other two systems. The GOA ecosystem appears balanced between benthic and pelagic pathways, but is notable in having a smaller fisheries catch relative to the other two systems, and a high biomass of fish predators above trophic level (TL) 4, arrowtooth flounder and halibut. The patterns visible in aggregated food webs were confirmed in additional more detailed analyses of biomass and consumption in each ecosystem, using both the single species and whole ecosystem indicators developed here

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore