154 research outputs found
Factors Affecting Minor Psychiatric Disorder in Southern Iranian Nurses: A Latent Class Regression Analysis
Background: Mental health is one of the most important dimensions of life and its quality. Minor Psychiatric Disorder as a type of mental health problem is prevalent among health workers. Nursing is considered to be one of the most stressful occupations.
Objectives: This study aimed to evaluate the prevalence of minor psychiatric disorder and its associated factors among nurses in southern Iran.
Patients and Methods: A cross-sectional study was carried out on 771 nurses working in 20 cities of Bushehr and Fars provinces in southern Iran. Participants were recruited through multi-stage sampling during 2014. The General Health Questionnaire (GHQ-12) was used for screening of minor psychiatric disorder in nurses. Latent Class Regression was used to analyze the data.
Results: The prevalence of minor psychiatric disorder among nurses was estimated to be 27.5%. Gender and sleep disorders were significant factors in determining the level of minor psychiatric disorder (P Values of 0.04 and < 0.001, respectively). Female nurses were 20% more likely than males to be classified into the minor psychiatric disorder group.
Conclusions: The results of this study provide information about the prevalence of minor psychiatric disorder among nurses, and factors, which affect the prevalence of such disorders. These findings can be used in strategic planning processes to improve nurses’ mental health
Routine human papillomavirus genotyping by DNA sequencing in community hospital laboratories
<p>Abstract</p> <p>Background</p> <p>Human papillomavirus (HPV) genotyping is important for following up patients with persistent HPV infection and for evaluation of prevention strategy for the individual patients to be immunized with type-specific HPV vaccines. The aim of this study was to optimize a robust "low-temperature" (LoTemp™) PCR system to streamline the research protocols for HPV DNA nested PCR-amplification followed by genotyping with direct DNA sequencing. The protocol optimization facilitates transferring this molecular technology into clinical laboratory practice. In particular, lowering the temperature by 10°C at each step of thermocycling during <it>in vitro </it>DNA amplification yields more homogeneous PCR products. With this protocol, template purification before enzymatic cycle primer extensions is no longer necessary.</p> <p>Results</p> <p>The HPV genomic DNA extracted from liquid-based alcohol-preserved cervicovaginal cells was first amplified by the consensus MY09/MY11 primer pair followed by nested PCR with GP5+/GP6+ primers. The 150 bp nested PCR products were subjected to direct DNA sequencing. The hypervariable 34–50 bp DNA sequence downstream of the GP5+ primer site was compared to the known HPV DNA sequences stored in the GenBank using on-line BLAST for genotyping. The LoTemp™ ready-to-use PCR polymerase reagents proved to be stable at room temperature for at least 6 weeks. Nested PCR detected 107 isolates of HPV in 513 cervicovaginal clinical samples, all validated by DNA sequencing. HPV-16 was the most prevalent genotype constituting 29 of 107 positive cases (27.2%), followed by HPV-56 (8.5%). For comparison, Digene HC2 test detected 62.6% of the 107 HPV isolates and returned 11 (37.9%) of the 29 HPV-16 positive cases as "positive for high-risk HPV".</p> <p>Conclusion</p> <p>The LoTemp™ ready-to-use PCR polymerase system which allows thermocycling at 85°C for denaturing, 40°C for annealing and 65°C for primer extension can be adapted for target HPV DNA amplification by nested PCR and for preparation of clinical materials for genotyping by direct DNA sequencing. HPV genotyping is performed by on-line BLAST algorithm of a hypervariable L1 region. The DNA sequence is included in each report to the physician for comparison in following up patients with persistent HPV infection, a recognized tumor promoter in cancer induction.</p
Gabapentin for the hemodynamic response to intubation: systematic review and meta-analysis
Purpose
Endotracheal intubation is the gold standard for securing the airway before surgery. Nevertheless, this procedure can produce an activation of the sympathetic nervous system and result in a hemodynamic response which, in high-risk patients, may lead to cardiovascular instability and myocardial ischemia. The aim of this review was to evaluate whether gabapentin can attenuate this response and whether such an attenuation could translate into reduced myocardial ischemia and mortality.
Source
We searched MEDLINE®, EMBASE™, CINAHL, AMED, and unpublished clinical trial databases for randomized-controlled trials that compared gabapentin with control, fentanyl, clonidine, or beta blockers for attenuating the hemodynamic response to intubation. Primary outcomes were mortality, myocardial infarction, and myocardial ischemia. Secondary outcomes were hemodynamic changes following intubation.
Principal findings
We included 29 randomized trials with only two studies at low risk of bias. No data were provided for the primary outcomes and no studies included high-risk patients. The use of gabapentin resulted in attenuation in the rise in mean arterial blood pressure [mean difference (MD), −12 mmHg; 95% confidence interval (CI), −17 to −8] and heart rate (MD, −8 beats·min−1; 95% CI, −11 to −5) one minute after intubation. Gabapentin also reduced the risk of hypertension or tachycardia requiring treatment (risk ratio, 0.15; 95% CI, 0.05 to 0.48). Data were limited on adverse hemodynamic events such as bradycardia and hypotension.
Conclusion
It remains unknown whether gabapentin improves clinically relevant outcomes such as death and myocardial infarction since studies failed to report on these. Nevertheless, gabapentin attenuated increases in heart rate and blood pressure following intubation when compared with the control group. Even so, the studies included in this review were at potential risk of bias. Moreover, they did not include high-risk patients or report adverse hemodynamic outcomes. Future studies are required to address these limitations
A Criterion for Brittle Failure of Rocks Using the Theory of Critical Distances
This paper presents a new analytical criterion for brittle failure of rocks and heavily overconsolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as the critical distance. This fracture
criterion is known as the Point Method, and is part of the Theory of Critical Distances, which is utilized in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, ó0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, óc and ót.
The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (óc/ót=3-50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low confining stresses.The work presented was initiated during a research project on “Structural integrity
assessments of notch-type defects", for the Spanish Ministry of Science and Innovation
(Ref.: MAT2010-15721)
Association between adolescent idiopathic scoliosis prevalence and age at menarche in different geographic latitudes
BACKGROUND: Age at menarche is considered a reliable prognostic factor for idiopathic scoliosis and varies in different geographic latitudes. Adolescent idiopathic scoliosis prevalence has also been reported to be different in various latitudes and demonstrates higher values in northern countries. A study on epidemiological reports from the literature was conducted to investigate a possible association between prevalence of adolescent idiopathic scoliosis and age at menarche among normal girls in various geographic latitudes. An attempt is also made to implicate a possible role of melatonin in the above association. MATERIAL-METHODS: 20 peer-reviewed published papers reporting adolescent idiopathic scoliosis prevalence and 33 peer-reviewed papers reporting age at menarche in normal girls from most geographic areas of the northern hemisphere were retrieved from the literature. The geographic latitude of each centre where a particular study was originated was documented. The statistical analysis included regression of the adolescent idiopathic scoliosis prevalence and age at menarche by latitude. RESULTS: The regression of prevalence of adolescent idiopathic scoliosis and age at menarche by latitude is statistically significant (p < 0.001) and are following a parallel declining course of their regression curves, especially in latitudes northern than 25 degrees. CONCLUSION: Late age at menarche is parallel with higher prevalence of adolescent idiopathic scoliosis. Pubarche appears later in girls that live in northern latitudes and thus prolongs the period of spine vulnerability while other pre-existing or aetiological factors are contributing to the development of adolescent idiopathic scoliosis. A possible role of geography in the pathogenesis of idiopathic scoliosis is discussed, as it appears that latitude which differentiates the sunlight influences melatonin secretion and modifies age at menarche, which is associated to the prevalence of idiopathic scoliosis
Pemphigus autoimmunity: Hypotheses and realities
The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background
Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.
Methods
The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.
Findings
The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.
Interpretation
Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere
- …