29 research outputs found

    Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis

    Get PDF
    AbstractTrihelix DNA-binding factors (or GT factors) bind to GT elements found in the promoters of many plant genes. Although the binding specificity and the transcriptional activity of some members (e.g. GT-1 and GT-2) have been studied, the regulatory function of this family of transcription factors remains largely unknown. In this work, we have characterised a new GT factor, namely GT-3a, and a closely related member, GT-3b. We show that (1) they can form either homo- or heterodimers but do not interact with GT-1; (2) they are predominantly expressed in floral buds and roots; (3) GT-3a cannot bind to the binding sites of GT-1 or GT-2, but binds to the cab2 and rbcS-1A gene promoters via the 5′-GTTAC sequence, which has been previously shown to be the core of the Site 1 type of GT elements. These results suggest that GT-3a and GT-3b belong to a distinct subgroup of GT factors and that each subgroup of GT factors binds to a functionally distinct type of cis-acting GT elements

    Catalytic Oxidation of Propylene, Toluene, Carbon Monoxide, and Carbon Black over Au/CeO 2

    Get PDF
    Au/CeO2 solids were prepared by two methods: deposition-precipitation (DP) and impregnation (Imp). The prepared solids were calcined under air at 400°C. Both types of catalysts have been tested in the total oxidation of propylene, toluene, carbon monoxide, and carbon black. Au/CeO2-DP solids were the most reactive owing to the high number of gold nanoparticles and Au+ species and the low concentration of Cl- ions present on its surface compared to those observed in Au/CeO2-Imp solids

    DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification

    Get PDF
    Quantifcation of tumor heterogeneity is essential to better understand cancer progression and to adapt therapeutic treatments to patient specifcities. Bioinformatic tools to assess the diferent cell populations from single-omic datasets as bulk transcriptome or methylome samples have been recently developed, including reference-based and reference-free methods. Improved methods using multi-omic datasets are yet to be developed in the future and the community would need systematic tools to perform a comparative evaluation of these algorithms on controlled data

    FOOD COMPOSITION AND ADDITIVES Evaluation of Different Machines Used to Quantify Genetic Modification by Real-Time PCR

    No full text
    Quantification of genetic modification (GM) is often undertaken to test for compliance with the European Union GM labeling threshold in food. Different control laboratories will often use common validated methods, but with different models of real-time PCR machines. We performed two separate ring trials to evaluate the relative precision and accuracy of different types of real-time PCR machines used to quantify the concentration of GM maize. Both trials used dual-labeled fluorogenic probes for quantification. The first ring trial used separate GM and reference assays (a single fluorescence channel), and the second used a combined duplex assay (two simultaneous fluorescence channels). Five manufacturers an

    Evaluation of different machines used to quantify genetic modification by real-time PCR

    Full text link
    Quantification of genetic modification (GM) is often undertaken to test for compliance with the European Union GM labeling threshold in food. Different control laboratories will often use common validated methods, but with different models of real-time PCR machines. We performed two separate ring trials to evaluate the relative precision and accuracy of different types of real-time PCR machines used to quantify the concentration of GM maize. Both trials used dual-labeled fluorogenic probes for quantification. The first ring trial used separate GM and reference assays (a single fluorescence channel), and the second used a combined duplex assay (two simultaneous fluorescence channels). Five manufacturers and seven models--including a 96-well microtiter-plate, rotary, and portable machines--were examined. In one trial, the machine used had a significant effect on precision, but in the other it did not. Overall, the degree of variation due to the machine model was lower than other factors. No significant repeatable difference in accuracy was observed between machine models. It was not possible to use sufficient replication of machine type in each laboratory to examine all sources of variation in this study, but the results strongly indicate that factors other than machine type or manufacturer (e.g., method or laboratory) contribute more to variation in a GM quantification result

    Review of Prognostic Expression Markers for Clear Cell Renal Cell Carcinoma

    No full text
    International audienceContext: The number of prognostic markers for clear cell renal cell carcinoma (ccRCC) has been increasing regularly over the last 15 years, without being integrated and compared.Objective: Our goal was to perform a review of prognostic markers for ccRCC to lay the ground for their use in the clinics.Evidence Acquisition: PubMed database was searched to identify RNA and protein markers whose expression level was reported as associated with survival of ccRCC patients. Relevant studies were selected through cross-reading by two readers.Evidence Synthesis: We selected 249 studies reporting an association with prognostic of either single markers or multiple-marker models. Altogether, these studies were based on a total of 341 distinct markers and 13 multiple-marker models. Twenty percent of these markers were involved in four biological pathways altered in ccRCC: cell cycle, angiogenesis, hypoxia, and immune response. The main genes (VHL, PBRM1, BAP1, and SETD2) involved in ccRCC carcinogenesis are not the most relevant for assessing survival.Conclusion: Among single markers, the most validated markers were KI67, BIRC5, TP53, CXCR4, and CA9. Of the multiple-marker models, the most famous model, ClearCode34, has been highly validated on several independent datasets, but its clinical utility has not yet been investigated.Patient Summary: Over the years, the prognosis studies have evolved from single markers to multiple-marker models. Our review highlights the highly validated prognostic markers and multiple-marker models and discusses their clinical utility for better therapeutic care

    Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth

    No full text
    Plant growth and development are sensitive to light. Light-responsive DNA-binding transcription factors have been functionally identified. However, how transcription initiation complex integrates light signals from enhancer-bound transcription factors remains unknown. In this work, we characterized mutations within the Arabidopsis HAF2 gene encoding TATA-binding protein-associated factor TAF1 (or TAFII250). The mutation of HAF2 induced decreases on chlorophyll accumulation, light-induced mRNA levels, and promoter activity. Genetic analysis indicated that HAF2 is involved in the pathways of both red/far-red and blue light signals. Double mutants between haf2-1 and hy5-1, a mutation of a light signaling positive DNA-binding transcription factor gene, had a synergistic effect on photomorphogenic traits and light-activated gene expression under different light wavelengths, suggesting that HAF2 is required for interaction with additional light-responsive DNA-binding transcription factors to fully respond to light induction. Chromatin immunoprecipitation assays showed that the mutation of HAF2 reduced acetylation of histone H3 in light-responsive promoters. In addition, transcriptome analysis showed that the mutation altered the expression of about 9% of genes in young leaves. These data indicate that TAF1 encoded by the Arabidopsis HAF2 gene functions as a coactivator capable of integrating light signals and acetylating histones to activate light-induced gene transcription

    Adrenal gland as a sanctuary site for immunotherapy in patients with microsatellite instability-high metastatic colorectal cancer

    No full text
    Metastatic colorectal cancers (mCRC) harboring microsatellite instability (MSI) are sensitive to immune checkpoint inhibitors (ICIs), but the mechanisms of resistance to ICIs remain unclear. Dissociated responses in patients with ICI-treated cancer suggest that certain organs may serve as sanctuary sites due to the tumor microenvironment. This case series describes five patients with ICI-treated MSI mCRC with disease progression limited to the adrenal glands. At ICI initiation, three patients were free of metastasis in the adrenal glands. Four patients experienced objective response per RECIST (Response Evaluation Criteria in Solid Tumors) while treated with ICI. ICI treatment was discontinued due to progressive disease limited to the adrenal glands (n=3) or toxicity (n=2). The time between ICI initiation and progression in the adrenal glands ranged from 11 to 39 months. Adrenalectomy (n=3) and stereotactic body radiation therapy (n=2) were performed. At the last follow-up, all patients were alive and progression free. Molecular analyses were performed in one patient. A significant impairment of the antigen presentation pathway was observed in the ICI-resistant lesion of the adrenal gland, which could be explained by the presence of glucocorticoids in the adrenal gland microenvironment. We also detected an overexpression of TSC22D3, a glucocorticoid-target gene that functions as a mediator of anti-inflammation and immunosuppression. This case series suggests that the adrenal glands may be the sanctuary sites for ICI-treated MSI mCRC through the glucocorticoid-induced impairment of the antigen presentation machinery
    corecore