411 research outputs found

    The role of interest rates in Federal Reserve policymaking: discussion

    Get PDF
    Monetary policy - United States ; Interest rates ; Monetary policy

    Liquidity and public policy

    Get PDF
    Liquidity (Economics)

    Federal reserve security transactions, 1954-63

    Get PDF
    Open market operations ; Government securities

    Metallic bonding due to correlations: A quantum chemical ab-initio calculation of the cohesive energy of mercury

    Full text link
    Solid mercury in the rhombohedral structure is unbound within the self-consistent field (Hartree-Fock) approximation. The metallic binding is entirely due to electronic correlations. We determine the cohesive energy of solid mercury within an ab-initio many-body expansion for the correlation part. Electronic correlations in the 5d5d shell contribute about half to the cohesive energy. Relativistic effects are found to be very important. Very good agreement with the experimental value is obtained.Comment: 4 pages, 1 figur

    A Study of Transparent Plastics for use on Aircraft. Supplement

    Get PDF
    This supplement to a NACA study issued in May 1937 entitled "A Study of Transparent Plastics for Use on Aircraft", contains two tables. These tables contain data on bursting strengths of plastics, particularly at low temperatures. Table 1 contains the values reported in a table of the original memorandum, and additional values obtained at approximately 25 C, for three samples of Acrylate resin. The second table contains data obtained for the bursting strength when one surface of the plastic was cooled to approximately -35 C

    Rydberg-London Potential for Diatomic Molecules and Unbonded Atom Pairs

    Full text link
    We propose and test a pair potential that is accurate at all relevant distances and simple enough for use in large-scale computer simulations. A combination of the Rydberg potential from spectroscopy and the London inverse-sixth-power energy, the proposed form fits spectroscopically determined potentials better than the Morse, Varnshi, and Hulburt-Hirschfelder potentials and much better than the Lennard-Jones and harmonic potentials. At long distances, it goes smoothly to the correct London force appropriate for gases and preserves van der Waals's "continuity of the gas and liquid states," which is routinely violated by coefficients assigned to the Lennard-Jones 6-12 form.Comment: Five pages, 10 figure

    Multibody Multipole Methods

    Full text link
    A three-body potential function can account for interactions among triples of particles which are uncaptured by pairwise interaction functions such as Coulombic or Lennard-Jones potentials. Likewise, a multibody potential of order nn can account for interactions among nn-tuples of particles uncaptured by interaction functions of lower orders. To date, the computation of multibody potential functions for a large number of particles has not been possible due to its O(Nn)O(N^n) scaling cost. In this paper we describe a fast tree-code for efficiently approximating multibody potentials that can be factorized as products of functions of pairwise distances. For the first time, we show how to derive a Barnes-Hut type algorithm for handling interactions among more than two particles. Our algorithm uses two approximation schemes: 1) a deterministic series expansion-based method; 2) a Monte Carlo-based approximation based on the central limit theorem. Our approach guarantees a user-specified bound on the absolute or relative error in the computed potential with an asymptotic probability guarantee. We provide speedup results on a three-body dispersion potential, the Axilrod-Teller potential.Comment: To appear in Journal of Computational Physic

    Long-range three-body atom-diatom potential for doublet Li3{}_3

    Full text link
    An accurate long-range {\em ab initio} potential energy surface has been calculated for the ground state 2A{}^2A' lithium trimer in the frozen diatom approximation using all electron RCCSD(T). The {\em ab initio} energies are corrected for basis set superposition error and extrapolated to the complete basis limit. Molecular van der Waals dispersion coefficients and three-body dispersion damping terms for the atom-diatomic dissociation limit are presented from a linear least squares fit and shown to be an essentially exact representation of the {\em ab initio} surface at large range

    Formation of atomic tritium clusters and condensates

    Get PDF
    We present an extensive study of the static and dynamic properties of systems of spin-polarized tritium atoms. In particular, we calculate the two-body |F,m_F>=|0,0> s-wave scattering length and show that it can be manipulated via a Feshbach resonance at a field strength of about 870G. Such a resonance might be exploited to make and control a Bose-Einstein condensate of tritium in the |0,0> state. It is further shown that the quartet tritium trimer is the only bound hydrogen isotope and that its single vibrational bound state is a Borromean state. The ground state properties of larger spin-polarized tritium clusters are also presented and compared with those of helium clusters.Comment: 5 pages, 3 figure
    corecore