80 research outputs found

    Axillary sentinel lymph node biopsy after mastectomy: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sentinel lymph node biopsy has been established as the preferred method for staging early breast cancer. A prior history of mastectomy is felt to be a contraindication.</p> <p>Case presentation</p> <p>A patient with recurrent breast cancer in her skin flap was discovered to have positive axillary sentinel nodes by sentinel lymph node biopsy five years after mastectomy for ductal carcinoma in situ.</p> <p>Conclusion</p> <p>A prior history of mastectomy may not be an absolute contraindication to sentinel lymph node biopsy.</p

    Increased Resistance of Bt Aspens to Phratora vitellinae (Coleoptera) Leads to Increased Plant Growth under Experimental Conditions

    Get PDF
    One main aim with genetic modification (GM) of trees is to produce plants that are resistant to various types of pests. The effectiveness of GM-introduced toxins against specific pest species on trees has been shown in the laboratory. However, few attempts have been made to determine if the production of these toxins and reduced herbivory will translate into increased tree productivity. We established an experiment with two lines of potted aspens (Populus tremulaĂ—Populus tremuloides) which express Bt (Bacillus thuringiensis) toxins and the isogenic wildtype (Wt) in the lab. The goal was to explore how experimentally controlled levels of a targeted leaf beetle Phratora vitellinae (Coleoptera; Chrysomelidae) influenced leaf damage severity, leaf beetle performance and the growth of aspen. Four patterns emerged. Firstly, we found clear evidence that Bt toxins reduce leaf damage. The damage on the Bt lines was significantly lower than for the Wt line in high and low herbivory treatment, respectively. Secondly, Bt toxins had a significant negative effect on leaf beetle survival. Thirdly, the significant decrease in height of the Wt line with increasing herbivory and the relative increase in height of one of the Bt lines compared with the Wt line in the presence of herbivores suggest that this also might translate into increased biomass production of Bt trees. This realized benefit was context-dependent and is likely to be manifested only if herbivore pressure is sufficiently high. However, these herbivore induced patterns did not translate into significant affect on biomass, instead one Bt line overall produced less biomass than the Wt. Fourthly, compiled results suggest that the growth reduction in one Bt line as indicated here is likely due to events in the transformation process and that a hypothesized cost of producing Bt toxins is of subordinate significance

    Living on the edge: utilising lidar data to assess the importance of vegetation structure for avian diversity in fragmented woodlands and their edges

    Get PDF
    Context: In agricultural landscapes, small woodland patches can be important wildlife refuges. Their value in maintaining biodiversity may, however, be compromised by isolation, and so knowledge about the role of habitat structure is vital to understand the drivers of diversity. This study examined how avian diversity and abundance were related to habitat structure in four small woods in an agricultural landscape in eastern England. Objectives: The aims were to examine the edge effect on bird diversity and abundance, and the contributory role of vegetation structure. Specifically: what is the role of vegetation structure on edge effects, and which edge structures support the greatest bird diversity? Methods: Annual breeding bird census data for 28 species were combined with airborne lidar data in linear mixed models fitted separately at (i) the whole wood level, and (ii) for the woodland edges only. Results: Despite relatively small woodland areas (4.9–9.4 ha), bird diversity increased significantly towards the edges, being driven in part by vegetation structure. At the whole woods level, diversity was positively associated with increased vegetation above 0.5 m and especially with increasing vegetation density in the understorey layer, which was more abundant at the woodland edges. Diversity along the edges was largely driven by the density of vegetation below 4 m. Conclusions: The results demonstrate that bird diversity was maximised by a diverse vegetation structure across the wood and especially a dense understorey along the edge. These findings can assist bird conservation by guiding habitat management of remaining woodland patches

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds

    Get PDF
    A growing body of evidence highlights the relationship between epigenetics, especially DNA methylation, and population divergence as well as speciation. However, little is known about how general the phenomenon of epigenetics-wise separation of different populations is, or whether population assignment is, possible based on solely epigenetic marks. In the present study, we compared DNA methylation profiles between four different canine populations: three domestic dog breeds and their ancestor the gray wolf. Altogether, 79 CpG sites constituting the 65 so-called CpG units located in the promoter regions of genes affecting behavioral and temperamental traits (COMT, HTR1A, MAOA, OXTR, SLC6A4, TPH1, WFS1)-regions putatively targeted during domestication and breed selection. Methylation status of buccal cells was assessed using EpiTYPER technology. Significant inter-population methylation differences were found in 52.3% of all CpG units investigated. DNA methylation profile-based hierarchical cluster analysis indicated an unambiguous segregation of wolf from domestic dog. In addition, one of the three dog breeds (Golden Retriever) investigated also formed a separate, autonomous group. The findings support that population segregation is interrelated with shifts in DNA methylation patterns, at least in putative selection target regions, and also imply that epigenetic profiles could provide a sufficient basis for population assignment of individuals

    Mega El Niño's change the playing field for culturally important tree species and hence the foundation for human-nature interactions in tropical forests

    No full text
    Humans have interacted with trees for millennia and the strength of such interactions determines the long-term social values of trees and forests. Such ecocultural linkages could be important to promote during reforestation efforts, potentially helping to turn the tide on the current rapid extinction of cultural and biological diversity. In addition, predicting the fate of ecoculturally important species to changing climates may help guide tree species selection best-suited to future climates. We assessed the vulnerability of four ecoculturally important tree species native to Southeast Asia to an extreme drought: Koompassia excelsa, Nephelium lappaceum, Shorea fallax and Shorea leprosula. These species provide distinct and unique products, and Koompassia excelsa is well-represented in local mythological stories and considered a Cultural Keystone Species (CKS). We used two complementary approaches: 1) an experimental common garden and 2) naturally occurring wild trees growing in a secondary forest and compared the performance of trees before, after, and during the 2016 El Niño event with record breaking low precipitation and high temperatures. We found that mortality of the CKS K. excelsa in the common garden, along with mortality and growth of wild trees were unaffected by the El Niño drought. In contrast, young trees of N. lappaceum and S. fallax planted in the common garden had mortality 4 and 3 times higher, respectively, during the El Niño drought compared to normal years. Growth rate of S. fallax in the wild was also significantly lower during the El Niño drought and this effect was particularly pronounced in highly disturbed forests. Our results demonstrate that the impact of extreme climatic events, that are predicted to become more common with climate change, on culturally important tree species is species specific. Management of such species may thus need species specific measures to maintain viable populations and hence provide the basic physical settings for human-nature interactions and associated cultural identities to persist. In this context, our findings that cultural keystone species such as K. excelsa could be drought tolerant is noteworthy, as investing on such species could prove to be beneficial for both local cultures and conservation of native ecosystems and biodiversity
    • …
    corecore