8 research outputs found

    Substrate Impact on MR Characteristics of Carbon Nano Films Explored via AFM and Raman Analysis

    No full text
    Recent advances in the fabrication and classification of amorphous carbon (a-Carbon) thin films play an active part in the field of surface materials science. In this paper, a pulsed laser deposition (PLD) technique through controlling experimental parameters, including deposition time/temperature and laser energy/frequency, has been employed to examine the substrate effect of amorphous carbon thin film fabrication over SiO2 and glass substrates. In this paper, we have examined the structural and magnetoresistance (MR) properties of these thin films. The intensity ratio of the G-band and D-band (ID/IG) were 1.1 and 2.4, where the C(sp2) atomic ratio for the thin films samples that were prepared on glass and SiO2 substrates, were observed as 65% and 85%, respectively. The MR properties were examined under a magnetic field ranging from −9 T to 9 T within a 2-K to 40-K temperature range. A positive MR value of 15% was examined at a low temperature of 2 K for the thin films grown on SiO2 substrate at a growth temperature of 400 °C using a 300 mJ/pulse laser frequency. The structural changes may tune the magnetoresistance properties of these a-Carbon materials. These results were demonstrated to be highly promising for carbon-based spintronics and magnetic sensors

    Structural and Magnetoresistance Properties of Transfer-Free Amorphous Carbon Thin Films

    No full text
    The control of the morphologies and thus the optical, electrical, and magnetic effect of 2D thin films is a challenging task for the development of cost-efficient devices. In particular, the angular dependent magnetoresistance (MR) of surface thin films up to room temperature is an interesting phenomenon in materials science. Here, we report amorphous carbon thin films fabricated through chemical vapor deposition at a SiO2 substrate. Their structural and angular magnetoresistance properties were investigated by several analytical tools. Specifically, we used a physical property measurement system to estimate the magnitude of the angular MR of these as-prepared sample thin films from 2 K to 300 K. An angular MR magnitude of 1.6% for the undoped a-carbon thin films was found up to 300 K. Under the magnetic field of 7 T, these films possessed an angular MR of 15% at a low temperature of 2 K. A high disorder degree leads to a large magnitude of MR. The grain boundary scattering model was used to interpret the mechanism of this angular MR

    Anomalous Non-Linear to Linear Shift in Magnetoresistance of Amorphous Carbon Films

    No full text
    Non-linear to linear negative magnetoresistance (MR) was studied under the magnetic field ranging from −7 T to 7 T with a change in measurement temperature from 2 K to 300 K. Under the magnetic field of 7 T, a maximum MR magnitude of 8.2% was observed at 2 K. The chemical vapor deposition technique was adopted to synthesize the amorphous carbon thin films. Non-saturated and non-linear negative MR was observed for the lower temperatures, while 10 K was observed as transition temperature. Afterwards, the more likely linear MR behavior was observed up to 300 K. MR shape change was correlated with the structural morphology of metallic disordered graphitic layers or the random stacking of graphene layers with amorphous carbon. The negative MR mechanism for such a non-linear to linear shift was partially assumed as a combined effect of the diffused scattering theory and the weak localization theory. The negative MR effect has a direct relation with the degree of structural order
    corecore