270 research outputs found
Seizure And COVID-19: Association and Review of Potential Mechanism.
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China, this highly transmissible virus has since spread rapidly around the world. Though respiratory complication is the primarily reported manifestation though rare, yet serious neurological complications are being frequently reported in the literature. In selected coronavirus disease-2019 (COVID-19) cases neurologic complications may manifest as seizures. In this paper, we have reviewed current literature on seizures linked with SARS- COV 2 infection including published or pre-print original articles, review articles, and case reports. We have discussed the electroencephalogram (EEG), imaging, and Cerebrospinal fluid (CSF) findings in COVID-19 patients presenting with seizure. We will be concluding the paper by briefly discussing the three possible seizure development mechanisms in patients infected with SARS- COV 2, which includes - (a) Direct Mechanism (b) Indirect Mechanism and (c) Exacerbation of Seizure in Patients with Epilepsy (PWE). Our aim is to update the physicians working with COVID-19 patients about this potential complication and hope that understanding of these proposed mechanisms can provide an opportunity for the physicians for early diagnosis or even better, help prevent this complication
Singular fractional technique for free convective Casson hybrid nanofluid with optically thick medium and shape effects
The transmission of heat in a time-dependent flow of a viscid non-Newtonian hybrid nanofluid comprising magnetite and copper oxide nanoparticles persuaded by an upright plate has been explored in regards to the effect of heat radiation and nanoparticle shape factors. The fluid flow phenomenon of the problem is constructed using the derivative of the Caputo fractional order 0 1. As a hybrid method, the dimensionless governing fractional partial differential equation was solved analytically using transforms such as Laplace and Fourier sine. With the Mittag-Leffler function, analytical solutions are achieved for fluid flow, energy distribution, rate of heat transmission, and shear stress. Moreover, limit-case solutions for classical PDEs were given for the derived governing flow model. Graphical depictions, tables, and bar graphs are constructed using "MATLAB" for a thorough examination of the problem. The graphical findings suggest that the efficiency of hybrid nanofluids is substantially better with the Caputofractional order approach than with ordinary derivatives. Finally, a comparison with existing literature results is performed and determined to be good
COVID-19 presenting as stroke
© 2020 Elsevier Inc. Objective: Acute stroke remains a medical emergency even during the COVID-19 pandemic. Most patients with COVID-19 infection present with constitutional and respiratory symptoms; while others present with atypical gastrointestinal, cardiovascular, or neurological manifestations. Here we present a series of four patients with COVID-19 that presented with acute stroke. Methods: We searched the hospital databases for patients that presented with acute stroke and concomitant features of suspected COVID-19 infection. All patients who had radiographic evidence of stroke and PCR-confirmed COVID-19 infection were included in the study. Patients admitted to the hospital with PCR- confirmed COVID-19 disease whose hospital course was complicated with acute stroke while inpatient were excluded from the study. Retrospective patient data were obtained from electronic medical records. Informed consent was obtained. Results: We identified four patients who presented with radiographic confirmation of acute stroke and PCR-confirmed SARS-CoV-2 infection. We elucidate the clinical characteristics, imaging findings, and the clinical course. Conclusions: Timely assessment and hyperacute treatment is the key to minimize mortality and morbidity of patients with acute stroke. Stroke teams should be wary of the fact that COVID-19 patients can present with cerebrovascular accidents and should dawn appropriate personal protective equipment in every suspected patient. Further studies are urgently needed to improve current understandings of neurological pathology in the setting of COVID-19 infection
Pathway-specific inhibition of primaquine metabolism by chloroquine/quinine
BACKGROUND: There has been some evidence to suggest that the addition of chloroquine (CQ) or quinine (QN) to 8-aminoquinoline (8-AQ) treatment regimens may increase the therapeutic efficacy of the 8-AQ and simultaneously mitigate against its haemolytic toxicity. However, both CQ and QN are considered effective, although perhaps moderate inhibitors of CYP2D6, an enzyme now regarded as necessary for primaquine (PQ) pharmacologic activity. An understanding of the influence of CQ and QN on the metabolism of PQ may shed light on the potential mechanisms of the beneficial interaction. METHODS: Differential metabolism of PQ enantiomers by recombinant human CYP2D6, monoamine oxidase A (MAO), and cryopreserved human hepatocytes in the presence/absence of CQ and QN. RESULTS: Both CQ and QN significantly inhibited the activity of CYP2D6. PQ depletion by MAO and human hepatocytes was not affected significantly by the presence of CQ and QN. CYP2D6-mediated hydroxylation was largely suppressed by both CQ and QN. The formation of the primary deaminated metabolites, including carboxyprimaquine (CPQ) and cyclized side chain derivative from the aldehyde (m/z 241), was not sensitive to the presence of CQ and QN. However, the appearance of the glucuronides of CPQ and PQ alcohol were significantly suppressed. CQ and QN also inhibited the appearance of the m/z 257 metabolite with a similar pattern, suggesting that it may be derived from the CPQ conjugate. The apparent quinone-imine of CPQ (m/z 289) was only partially suppressed by both QN and CQ, but with a differential pattern of inhibition for the two drugs. The m/z 274 (quinone-imine of a ring-hydroxylated PQ metabolite) and m/z 422 (an apparent glucose conjugate of PQ) metabolites in hepatocytes were strongly suppressed by both QN and CQ, perhaps a reflection of the 2D6 inhibition by these drugs. The formation of the carbamoyl glucuronide of PQ (m/z 480) was not affected by CQ/QN. CONCLUSION: The metabolite-specific interactions in the current studies seem at variance with earlier reports of the dependence of PQ on CYP2D6 metabolism, and enhanced PQ anti-malarial activity/reduced toxicity in the presence of CQ/QN. These results suggest a complex picture in which CQ/QN may shift metabolite pathway balances towards a profile that retains efficacy, while reducing the formation or availability of toxic metabolites to erythrocytes. Alternatively, these drugs may alter transport or distribution of PQ metabolites in a fashion that reduces toxicity while maintaining efficacy against the parasite
Formation primaquine-5, 6-orthoquinone, the putative active and toxic metabolite of primaquine via direct oxidation in human erythrocytes
Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics Short precorneal residence time and poor transocular membrane permeability are the major challenges associated with topical ocular drug delivery. In the present research, the efficiency of the electrolyte-triggered sol-to-gel-forming system of natamycin (NT) transfersomes was investigated for enhanced and prolonged ophthalmic delivery. Transfersomes were optimized by varying the molar ratios of phospholipid, sorbitan monostearate (Span) and tocopheryl polyethylene glycol succinate (TPGS). NT transfersome formulations (FNs) prepared with a 1:1 molar ratio of phospholipid-to-Span and low levels of TPGS showed optimal morphometric properties, and were thus selected to fabricate the in situ gelling system. Gellan gum-based (0.3% w/v) FN-loaded formulations (FNGs) immediately formed an in situ gel in the simulated tear fluid, with considerable viscoelastic characteristics. In vitro cytotoxicity in corneal epithelial cells and corneal histology studies demonstrated the ocular safety and cytocom-patibility of these optimized formulations. Transcorneal permeability of NT from these formulations was significantly higher than in the control suspension. Moreover, the ocular disposition studies of NT, from the FNs and FNGs, in New Zealand male albino rabbits demonstrated the superiority of the electrolyte-sensitive FNGs in terms of NT delivery to the ocular tissues
Inhibitory Activity of Machaeridiol-Based Novel Anti-MRSA and Anti-VRE Compounds and Their Profiling for Cancer-Related Signaling Pathways
Corresponding author (NCNPR): Premalatha Balachandran, [email protected]://egrove.olemiss.edu/pharm_annual_posters_2022/1002/thumbnail.jp
Magnetic properties of strained multiferroic : A soft x-ray study
Using resonant soft x-ray techniques we follow the magnetic behavior of a strained epitaxial film of CoCr2O4, a type-II multiferroic. The film is [110] oriented, such that both the ferroelectric and ferromagnetic moments can coexist in-plane. X-ray magnetic circular dichroism (XMCD) is used in scattering and in transmission modes to probe the magnetization of Co and Cr separately. The transmission measurements utilized x-ray excited optical luminescence from the substrate. Resonant soft x-ray diffraction (RXD) was used to study the magnetic order of the low temperature phase. The XMCD signals of Co and Cr appear at the same ordering temperature TC≈90K, and are always opposite in sign. The coercive field of the Co and of Cr moments is the same, and is approximately two orders of magnitude higher than in bulk. Through sum rules analysis an enlarged Co2+ orbital moment (mL) is found, which can explain this hardening. The RXD signal of the (q q 0) reflection appears below TS, the same ordering temperature as the conical magnetic structure in bulk, indicating that this phase remains multiferroic under strain. To describe the azimuthal dependence of this reflection, a slight modification is required to the spin model proposed by the conventional Lyons-Kaplan-Dwight-Menyuk theory for magnetic spinels
Magnetic properties of strained multiferroic CoCr2O4: a soft X-ray study
Using resonant soft X-ray techniques we follow the magnetic behavior of a
strained epitaxial film of CoCr2O4, a type-II multiferroic. The film is
[110]-oriented, such that both the ferroelectric and ferromagnetic moments can
coexist in plane. X-ray magnetic circular dichroism (XMCD) is used in
scattering and in transmission modes to probe the magnetization of Co and Cr
separately. The transmission measurements utilized X-ray excited optical
luminescence from the substrate. Resonant soft X-ray diffraction (RSXD) was
used to study the magnetic order of the low temperature phase. The XMCD signals
of Co and Cr appear at the same ordering temperature Tc~90K, and are always
opposite in sign. The coercive field of the Co and of Cr moments is the same,
and is approximately two orders of magnitude higher than in bulk. Through sum
rules analysis an enlarged Co2+ orbital moment (m_L) is found, which can
explain this hardening. The RSXD signal of the (q q 0) reflection appears below
Ts, the same ordering temperature as the conical magnetic structure in bulk,
indicating that this phase remains multiferroic under strain. To describe the
azimuthal dependence of this reflection, a slight modification is required to
the spin model proposed by the conventional Lyons-Kaplan-Dwight-Menyuk theory
for magnetic spinels. Lastly, a slight increase in reflected intensity is
observed below Ts=27K when measuring at the Cr edge (but not at the Co edge).Comment: 28 pages, 15 figure
ANTIMICROBIAL AND ANTIOXIDANT ACTIVITY OF UREA/ THIOUREA DERIVATIVES OF 5-METHYL-3-(UREDIOMETHYL)-HEXANOIC ACID
A series of urea/ thiourea derivatives of 5-methyl-3-(urediomethyl)-hexanoic acid has been successfully synthesized from the reaction of 3-aminomethyl-5-methylhexanoic acid and aryl isocyanate/ aryl isothiocyanates in presence of triethylamine base in tetrahydrofuran solvent at rt-40C by stirring the contents for 3h
- …