82 research outputs found
Strongly Localized State of a Photon at the Intersection of the Phase Slips in 2D Photonic Crystal with Low Contrast of Dielectric Constant
Two-dimensional photonic crystal with a rectangular symmetry and low contrast
(< 1) of the dielectric constant is considered. We demonstrate that, despite
the {\em absence} of a bandgap, strong localization of a photon can be achieved
for certain ``magic'' geometries of a unit cell by introducing two
phase slips along the major axes. Long-living photon mode is bound to the
intersection of the phase slips. We calculate analytically the lifetime of this
mode for the simplest geometry -- a square lattice of cylinders of a radius,
. We find the magic radius, , of a cylinder to be 43.10 percent of the
lattice constant. For this value of , the quality factor of the bound mode
exceeds . Small () deviation of from results in a
drastic damping of the bound mode.Comment: 6 pages, 2 figure
Enhancement of the Curie temperature in GaMnAs/InGaMnAs superlattices
We report on an enhancement of the Curie temperature in GaMnAs/InGaMnAs
superlattices grown by low-temperature molecular beam epitaxy, which is due to
thin InGaMnAs or InGaAs films embedded into the GaMnAs layers. The pronounced
increase of the Curie temperature is strongly correlated to the In
concentration in the embedded layers. Curie temperatures up to 110 K are
observed in such structures compared to 60 K in GaMnAs single layers grown
under the same conditions. A further increase in T up to 130 K can be
achieved using post-growth annealing at temperatures near the growth
temperature. Pronounced thickness fringes in the high resolution X-ray
diffraction spectra indicate good crystalline quality and sharp interfaces in
the structures.Comment: 4 pages, 4 figures, submitted to Appl. Phys. Let
Dynamics of a map with power-law tail
We analyze a one-dimensional piecewise continuous discrete model proposed
originally in studies on population ecology. The map is composed of a linear
part and a power-law decreasing piece, and has three parameters. The system
presents both regular and chaotic behavior. We study numerically and, in part,
analytically different bifurcation structures. Particularly interesting is the
description of the abrupt transition order-to-chaos mediated by an attractor
made of an infinite number of limit cycles with only a finite number of
different periods. It is shown that the power-law piece in the map is at the
origin of this type of bifurcation. The system exhibits interior crises and
crisis-induced intermittency.Comment: 28 pages, 17 figure
Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells
The band structure, quantum confinement of charge carriers, and their localization affect the optoelectronic properties of compound semiconductor heterostructures and multiple quantum wells (MQWs). We present here the results of a systematic first-principles based density functional theory (DFT) investigation of the dependence of the valence band offsets and band bending in polar and non-polar strain-free and in-plane strained heteroepitaxial In x Ga1- xN(InGaN)/GaN multilayers on the In composition and misfit strain. The results indicate that for non-polar m-plane configurations with [12¯10]InGaN // [12¯10]GaN and [0001]InGaN // [0001]GaN epitaxial alignments, the valence band offset changes linearly from 0 to 0.57 eV as the In composition is varied from 0 (GaN) to 1 (InN). These offsets are relatively insensitive to the misfit strain between InGaN and GaN. On the other hand, for polar c-plane strain-free heterostructures with [101¯0]InGaN // [101¯0]GaN and [12¯10]InGaN // [12¯10]GaN epitaxial alignments, the valence band offset increases nonlinearly from 0 eV (GaN) to 0.90 eV (InN). This is significantly reduced beyond x ≥ 0.5 by the effect of the equi-biaxial misfit strain. Thus, our results affirm that a combination of mechanical boundary conditions, epitaxial orientation, and variation in In concentration can be used as design parameters to rapidly tailor the band offsets in InGaN/GaN MQWs. Typically, calculations of the built-in electric field in complex semiconductor structures often must rely upon sequential optimization via repeated ab initio simulations. Here, we develop a formalism that augments such first-principles computations by including an electrostatic analysis (ESA) using Maxwell and Poisson\u27s relations, thereby converting laborious DFT calculations into finite difference equations that can be rapidly solved. We use these tools to determine the bound sheet charges and built-in electric fields in polar epitaxial InGaN/GaN MQWs on c-plane GaN substrates for In compositions x = 0.125, 0.25,…, and 0.875. The results of the continuum level ESA are in excellent agreement with those from the atomistic level DFT computations, and are, therefore, extendable to such InGaN/GaN MQWs with an arbitrary In composition
Electronic and magnetic properties of GaMnAs: Annealing effects
The effect of short-time and long-time annealing at 250C on the conductivity,
hole density, and Curie temperature of GaMnAs single layers and GaMnAs/InGaMnAs
heterostructures is studied by in-situ conductivity measurements as well as
Raman and SQUID measurements before and after annealing. Whereas the
conductivity monotonously increases with increasing annealing time, the hole
density and the Curie temperature show a saturation after annealing for 30
minutes. The incorporation of thin InGaMnAs layers drastically enhances the
Curie temperature of the GaMnAs layers.Comment: 4 pages, 6 figures, submitted to Physica
Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them
Hot electrons and the associated ballistic and quasiballistic transport, heretofore neglected endemically, across the active regions of InGaN light emitting diodes (LEDs) have been incorporated into a first order simple model which explains the experimental observations of electron spillover and the efficiency degradation at high injection levels. The model is in good agreement with experiments wherein an adjustable barrier hot electron stopper, commonly called the electron blocking layer (EBL), is incorporated. The model is also in agreement with experiments wherein the electrons are cooled, eliminating hot electrons, inside a staircase electron injector (SEI) prior to their injection into the active region. Thermionic emission from the active region, even if one uses an uncharacteristically high junction temperature of 1000 K, fails to account for the carrier spillover and the experimental observations in our laboratory in samples with varying EBL barrier heights. The model has been successfully applied to both m-plane (lacking polarization induced electric field) and c-plane (with polarization induced field) InGaN double heterostructure (DH) LEDs with a 6 nm active region featuring a variable barrier hot electron stopper, and a SEI, and the various combinations thereof. The choice of DH LEDs stems from our desire to keep the sample structure simple as well as the model calculations. In this paper, the theoretical and experimental data along with their comparison followed by an insightful discussion are given. The model and the approaches to eliminate carrier spillover proposed here for InGaN LEDs are also applicable to GaN-based laser diodes
Effect of annealing on the depth profile of hole concentration in (Ga,Mn)As
The effect of annealing at 250 C on the carrier depth profile, Mn
distribution, electrical conductivity, and Curie temperature of (Ga,Mn)As
layers with thicknesses > 200 nm, grown by molecular-beam epitaxy at low
temperatures, is studied by a variety of analytical methods. The vertical
gradient in hole concentration, revealed by electrochemical capacitance-voltage
profiling, is shown to play a key role in the understanding of conductivity and
magnetization data. The gradient, basically already present in as-grown
samples, is strongly influenced by post-growth annealing. From secondary ion
mass spectroscopy it can be concluded that, at least in thick layers, the
change in carrier depth profile and thus in conductivity is not primarily due
to out-diffusion of Mn interstitials during annealing. Two alternative possible
models are discussed.Comment: 8 pages, 8 figures, to appear in Phys. Rev.
- …