9 research outputs found
Whole brain radiotherapy with adjuvant or concomitant boost in brain metastasis: dosimetric comparison between helical and volumetric IMRT technique
To compare and evaluate the possible advantages related to the use of VMAT and helical IMRT and two different modalities of boost delivering, adjuvant stereotactic boost (SRS) or simultaneous integrated boost (SIB), in the treatment of brain metastasis (BM) in RPA classes I-II patients
Biophysical Characterization and Membrane Interaction of the Two Fusion Loops of Glycoprotein B from Herpes Simplex Type I Virus
The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV) requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes
Light and shadows of a new technique: Isphoton total-skin irradiation using helical IMRT feasible, less complex and as toxic as the electrons one?
BACKGROUND:
Radiotherapy is one of the standard treatments for cutaneous lymphoma and Total Skin Electrons Beam Irradiation (TSEBI) is generally used to treat diffuse cutaneous lymphoma and some cases of localized disease. Helical IMRT (HI) allows to treat complex target with optimal dose distribution and organ at risk sparing, so helical tomotherapy has been proposed as alternative technique to TSEBI but only one preliminary report has been published.
METHODS:
Three patients treated (from May 2013 to December 2014) with Helical IMRT, with a total dose between 24 and 30 Gy, were retrospectively evaluated. Data about dosimetric features, response and acute toxicity were registered and analyzed. Planned target coverage was compared with daily in vivo measures and dose calculation based on volumetric images used for set up evaluation as well.
RESULTS:
The patients had a mean measured surface fraction dose ranging from 1.54 Gy up to 2.0 Gy. A planned target dose ranging from 85 to 120% of prescription doses was obtained. All doses to Organs At Risk were within the required constraints. Particular attention was posed on "whole bone marrow" planned V10Gy, V12Gy and V20Gy values, ranging respectively between 23 and 43%, 20.1 and 38% and 9.8 and 24%. A comparison with the theoretical homologous values obtained with TSEBI has shown much lower values with TSEBI. Even if treatment was given in sequence to the skin of the upper and lower hemi-body, all the patients had anaemia, requiring blood transfusions, leukopenia and thrombocytopenia.
CONCLUSION:
Based on our limited results TSEBI should still be considered the standard method to treat total skin because of its pattern of acute and late toxicities and the dose distribution. In this particular case the better target coverage obtained with HI can be paid in terms of worse toxicity. Helical IMRT can instead be considered optimal in treating large, convex, cutaneous areas where it is difficult to use multiple electrons fields in relation with the clinical results and the limited and reversible toxicities
Modified expression of peripheral blood lymphocyte muscarinic cholinergic receptors in asthmatic children
Lymphocytes possess an independent cholinergic system. We assessed the expression of muscarinic cholinergic receptors in lymphocytes from 49 asthmatic children and 10 age matched controls using Western blot. We demonstrated that CD4+ and CD8+ T cells expressed M2 and M4 muscarinic receptors which density were significantly increased in asthmatic children in comparison with controls. M2 and M4 receptor increase was strictly related with IgE and fraction of exhaled nitric oxide (FeNO) measurements and with impairment in objective measurements of airway obstruction. Increased lymphocyte muscarinic cholinergic receptor expression may concur with lung cholinergic dysfunction and with inflammatory molecular framework in asthma
From the identification of actionable molecular targets to the generation of faithful neuroblastoma patient-derived preclinical models
Abstract Background Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Although the overall survival of patients with NB has improved in the last years, more than 50% of high-risk patients still undergo a relapse. Thus, in the era of precision/personalized medicine, the need for high-risk NB patient-specific therapies is urgent. Methods Within the PeRsonalizEd Medicine (PREME) program, patient-derived NB tumors and bone marrow (BM)-infiltrating NB cells, derived from either iliac crests or tumor bone lesions, underwent to histological and to flow cytometry immunophenotyping, respectively. BM samples containing a NB cells infiltration from 1 to 50 percent, underwent to a subsequent NB cells enrichment using immune-magnetic manipulation. Then, NB samples were used for the identification of actionable targets and for the generation of 3D/tumor-spheres and Patient-Derived Xenografts (PDX) and Cell PDX (CPDX) preclinical models. Results Eighty-four percent of NB-patients showed potentially therapeutically targetable somatic alterations (including point mutations, copy number variations and mRNA over-expression). Sixty-six percent of samples showed alterations, graded as “very high priority”, that are validated to be directly targetable by an approved drug or an investigational agent. A molecular targeted therapy was applied for four patients, while a genetic counseling was suggested to two patients having one pathogenic germline variant in known cancer predisposition genes. Out of eleven samples implanted in mice, five gave rise to (C)PDX, all preserved in a local PDX Bio-bank. Interestingly, comparing all molecular alterations and histological and immunophenotypic features among the original patient’s tumors and PDX/CPDX up to second generation, a high grade of similarity was observed. Notably, also 3D models conserved immunophenotypic features and molecular alterations of the original tumors. Conclusions PREME confirms the possibility of identifying targetable genomic alterations in NB, indeed, a molecular targeted therapy was applied to four NB patients. PREME paves the way to the creation of clinically relevant repositories of faithful patient-derived (C)PDX and 3D models, on which testing precision, NB standard-of-care and experimental medicines